Area C Infill Phase II Geology and Hydrology Report Brown Station Road Sanitary Landfill Facility

Prince George's County
Department of the Environment
Resource Recovery Division
3500 Brown Station Road
Upper Marlboro, MD 20774

SCS ENGINEERS

11260 Roger Bacon Drive Reston, VA 20190 703-471-6150

02201056.30

October 29, 2020 Revision 1: August 09, 2021 Revision 2: December 21, 2021

CERTIFICATION

I certify that the work described in this Report meets the requirements specified in COMAR 26.04.07.07. I certify that I have prepared or supervised the preparation of this report; that it has been prepared in accordance with industry standards and practices; that the information contained herein is truthful and accurate to the best of my knowledge; and that I am a duly registered Professional Engineer practicing under the laws of the State of Maryland.

Report: Phase II Geology and Hydrology Report

Area C Infill, Brown Station Road Sanitary Landfill

Name: Darrin D. Dillah, Ph.D., P.E., BCEE

Project Director and Vice President

"PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND.

LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

Signature:

Date: December 21, 2021

Company: SCS Engineers

Address: 11260 Roger Bacon Drive, Suite 300

City/State/Zip: Reston, Virginia 20190

Prepared and Reviewed by:

 Ravi Pal Singh Panesar, P.E. Project Manager
 SCS Engineers Signature

 Gomathy Radhakrishna Iyer, Ph.D., EIT Staff Professional SCS Engineers Signature Gilly

3. Parita R Shah Staff Professional SCS Engineers Signature _____

 Balwinder Singh Panesar, Ph.D. Project Manager
 SCS Engineers Signature Mem

EXECUTIVE SUMMARY

The existing Brown Station Road Sanitary Landfill (BSRSL), a municipal solid waste (MSW) facility, is owned and operated by the Prince George's County Government, Department of the Environment, Resource Recovery Division (the County). The facility encompasses about 1,250 acres; less than 25 percent of the property is currently used for landfill cells. The facility is located on Brown Station Road, about 2.5 miles northwest of Upper Marlboro, Maryland. It has three (3) disposal areas, Areas A-1, A-2, and B, with a total waste footprint of about 285 acres. Filling operations in Areas A-1 and A-2 stopped in 1993; Area B is presently active and continues to accept MSW.

The existing Landfill is expected to reach its permitted capacity by the end of 2025. To meet its solid waste management needs beyond 2025, the County plans to infill the airspace between the existing disposal areas, deemed the Area C Infill. The County submitted a Phase I Report and was informed on February 7, 2020 that the Phase I Permit Application is complete as per the Maryland Department of the Environment (MDE).

The proposed Area C Infill will span across approximately 225 acres within the existing site boundaries. About 165 acres of this area will overlay onto the existing fill areas and the existing waste footprint will increase by about 60 acres. This will add approximately 30 million cubic yards of airspace and extend the life of the Landfill for an additional 50 years beyond 2025.

SCS Engineers (SCS) has prepared this Phase II Geology and Hydrology Report to meet the requirements set forth in COMAR 26.04.07.07. To assist the reviewer in locating the specific sections of this report that address each COMAR regulatory requirement, a checklist table has been provided in Section 1.2.

The site's geology, upper aquifer, hydrogeology, and groundwater have been studied and monitored extensively during its 50-year plus history operating as a landfill. The Landfill is located within the Coastal Plain of Maryland. It overlies Quaternary Alluvium and Terrace Deposits, which overlay Tertiary Nanjemoy and Aquia Formations. The site's uppermost aquifer is encountered in the unconfined soil matrix of the Nanjemoy Formation, which is a clayey material. The site hydrogeology is such that the uppermost aquifer flows north, northeast, and east across the site towards Western Branch.

Based on geological investigations and geotechnical analyses, the subgrade material has adequate bearing strength to support the anticipated static and dynamic loads of the Area C Infill. Subgrade or existing waste settlement will not result in unacceptable liner elongation.

The Area C Infill project will be designed to meet the following requirements/criteria:

- A conceptual subgrade plan drawing was prepared so that the liner subbase is located at a minimum of 3 ft above the highest groundwater elevation, and sufficient bedding will be provided to prevent liner rupture during installation and operation.
- The bottom liner (BL) system will be similar in design to the Area B permitted system. An HDPE geomembrane liner will be used. Subgrade settlement and liner elongation calculations were preformed to support and confirm this design.
- The leachate collection layer will be designed to limit the maximum peak daily leachate head to less than 30 cm (1 ft) over the liner.

 An HDPE DR-17 leachate collection pipe will have sufficient strength and thickness to prevent collapse under pressures exerted by overlying waste, cover material, and operational equipment.

Leachate collected and removed from the Area C Infill will be pretreated at the existing leachate pretreatment plant onsite. Pretreated wastewater will continue to be discharged into the Washington Suburban Sanitary Commission's sanitary sewer system and sludge will be disposed at the working face of the Landfill. Present efforts are ongoing to upgrade and/or expand the pretreatment plant to handle leachate from the proposed Area C Infill.

Table of Contents

Sect	ion Pa	ge
Execu	utive Summary	i
List o	f Abbreviations/Acronyms	
1.0	Introduction	1
	1.1 Purpose	
	1.2 Phase II Report Requirements	1
2.0	General Site Description	5
	2.1 Site Background	5
	2.2 Up-to-date Site-Specific Topographic Map	5
3.0	Geology and Hydrogeology	6
	3.1 Physiography	6
	3.2 Geomorphology	6
	3.3 Regional Geology	7
	3.4 Site Geology	7
	3.4.1Soils	7
	3.4.2 Geology and Hydrogeologic Setting	7
	3.5 Geologic Cross-Sections	8
	3.6 Bedrock Map	9
	3.7 Fracture Trace Analysis or Aerial Photographic Lineament Analysis	9
	3.8 An Isopachous Map of Soil and Other Unconsolidated Sediments Above Groundwater	9
4.0	Groundwater	9
	4.1 Inventory of Production Wells	9
	4.2 Present and Projected Use of Geologic Formations as a Source of Groundwater	10
	4.3 Groundwater Elevation Monitoring	11
	4.3.1 Groundwater Monitoring Network History	12
	4.3.1 Groundwater Monitoring Wells Network	12
	4.3.2 Groundwater Elevation Data Analyses	13
	4.4 Groundwater Contour Maps	14
	4.5 Groundwater Quality	16
	4.5.1 Groundwater and Surface Water Quality Monitoring History	17
	4.5.2 MH-8 Area of Concern	19
	4.5.3 Nature and Extent Investigations	22
	4.6 Potential for Vertical and Horizontal Movements of Pollutants	25
5.0	Preliminary Conceptual Design	25
	5.1 Conceptual Subgrade Plan	26
	5.2 Conceptual Final Grading Plan	26
	5.3 Bottom Liner System	27
	5.3.1Soil Bearing Capacity Calculations	27
	5.3.2 Liner System Separation from Groundwater	27
	5.3.3 Subgrade Settlement and Liner Elongation	27
	5.3.4 Bottom Liner System and Leachate Collection Layer	28

5.3.5 Geomembrane Liners	29
5.4 Leachate Collection and Removal System	29
5.5 Bottom Liner System and LCR System Stability	
5.5.1 Koerner and Soong Method	30
5.5.2 Simplified Janbu Method (PCSTABL)	30
5.6 Leachate Pretreatment and Disposal	31
5.6.1Leachate Pretreatment Plant	31
6.0 References	32
Tables	
1. Phase II Report Checklist	
2. Pertinent Information on DW, IFW, and TW Wells in the Vicinity of Area 3. Initial Groundwater Monitoring Network	C Infill

- 4. Groundwater Monitoring Network
- 5. Elevated, Depressed, and Highest GWE Conditions at Critical and Other GWM wells

Exhibits

Exhibit II-1.	Site-Specific Topographic Map
Exhibit II-2.	Soil Boring Locations, Well Log Summary, and Geological Cross-Sections Layout
Exhibit II-3.	Maryland Physiographic Provinces and Approximate Site Location
Exhibit II-4.	Geological Cross-Section 1-1'
Exhibit II-5.	Geological Cross-Section 2-2'
Exhibit II-6.	Geological Cross-Section 3-3'
Exhibit II-7.	Isopachous Map of Soil and Other Unconsolidated Sediments Above Groundwater
Exhibit II-8.	Map of Production Wells Within 1/2 Mile of Area C Infill Boundary
Exhibit II-9.	Elevated Groundwater Contour Map
Exhibit II-10.	Depressed Groundwater Contour Map
Exhibit II-11.	Maximum Groundwater Contour Map
Exhibit II-12.	Preliminary Conceptual Design – Area C Infill
Exhibit II-13.	Bottom Liner System - Area C Infill
Exhibit II-14.	Settlement Sections - Layout
Exhibit II-15.	Profile – Section A-A'
Exhibit II-16.	Profile - Section B-B'
Exhibit II-17.	Profile – Section C-C'
Exhibit II-18.	Leachate Pretreatment Plant Schematic
Exhibit II-19.	Geological Cross-Section 4-4'
Exhibit II-20.	Conceptual Subgrade Plan
Exhibit II-21.	Conceptual Final Grading Plan

Appendices

Appendix II-A.	Coastal Plain Stratigraphy of Prince George's County, Maryland
Appendix II-B.	Pertinent Information on Production Wells
Appendix II-C.	Groundwater Monitoring Data and Outlier Analysis
Appendix II-D.	Soil Bearing Capacity Calculations
Annondiy II E	Subbase Settlement and Liner Floridation Estimates

Appendix II-E. Subbase Settlement and Liner Elongation Estimates

Appendix II-F. LCR Piping Strength Calculations

Appendix II-G. Veneer Stability Calculation of Bottom Liner and LCR System

Appendix II-H. List of Groundwater Quality Parameters

Attachments (Electronic Copy)

- Attachment 1. Hydrogeologic Characterization of Brown Station Road Sanitary Landfill Area A, Phase 1, by Roy F. Weston, Inc., Hydrogeologic Characterization of Brown Station Road Sanitary Landfill Area A, Phase 1, by Roy F. Weston, Inc., August 1982.
- Attachment 2. Hydrogeologic Characterization of Brown Station Road Sanitary Landfill Area A, Phase 2, by Roy F. Weston, Inc., October 1984.
- Attachment 3. Summary of Findings of the Geotechnical Investigation of Area B, Brown Station Road Sanitary Landfill, by Roy F. Weston, Inc., September 1989.
- Attachment 4. Additional Boring Logs of Groundwater Monitoring Wells.

LIST OF ABBREVIATIONS/ACRONYMS

AMSL Above Mean Sea Level

BL Bottom liner

BSRSL Brown Station Road Sanitary Landfill

CFR Code of Federal Regulations

cm Centimeter(s)

COC Constituent of Concern

COMAR The Code of Maryland Regulations

DR Dimension Ratio

DW Drinking Water Well

EPA United States Environmental Protection Agency

ESD Extreme Studentized Deviate

FEMA Federal Emergency Management Agency

ft Foot or feet

GPD Gallon(s) per Day

GPM Gallon(s) per Minute

GPS Groundwater Protection Standard

GSWMR Groundwater and Surface Water Monitoring Report
GW & SWMP Groundwater and Surface Water Monitoring Plan

GWE Groundwater Elevation
GWM Groundwater Monitoring

HDPE High Density Polyethylene

IFW Irrigation/Farming Well

in Inch(es)

IQR Inter Quartile Range

LB₁ Lower Boundary of Inner Fence
LB₂ Lower Boundary of Outer Fence
LCR Leachate Collection and Removal

LFG Landfill Gas

LOD Limit of Detection
LOQ Limit of Quantitation

LPP Leachate Pretreatment Plant

LSB Liner Subbase

MCL Maximum Contaminant Level

MDE Maryland Department of the Environment

MGS Maryland Geological Survey

mil One Thousandth of an Inch or 0.001 inch

MSL Mean Sea Level

MSW Municipal Solid Waste

NAIC The North American Industry Classification

NEI Nature and Extent Investigation

PΕ Poly Ethylene

PIA **Public Information Act** Pound(s) per Cubic Yard рсу Pound(s) per Cubic Foot pcf psf Pound(s) per Square Foot

PVC Poly Vinyl Chloride

1st Quartile (25th Percentile) Q1 Q3 3rd Quartile (75th Percentile) **RDP**

Refuse Disposal Permit

SBR Sequencing Batch Reactor

SCS SCS Engineers

Second(s) sec

SIC Standard Industrial Classification

SSS Sanitary Sewer System TKN Total Kjeldahl Nitrogen

UASB Upflow Anaerobic Sludge Baffled UB₁ Upper boundary of inner fence UB_2 Upper boundary of outer fence

USEPA United States Environmental Protection Agency

VOCs Volatile Organic Compounds

WSSC Washington Suburban Sanitary Commission

1.0 INTRODUCTION

The existing Brown Station Road Sanitary Landfill (Landfill) is a municipal solid waste (MSW) landfill with a primary SIC code of 4953 and an NAIC code of 562212. The Prince George's County Government, Department of the Environment, Resource Recovery Division (County) owns and operates the Landfill disposal areas under Permit No. 2015-WMF-0589, issued by the Maryland Department of the Environment (MDE). Landfilling operations began in 1968, more than 50 years ago, and continues today to meet the County's solid waste needs.

The Landfill is located on Brown Station Road, about 2.5 miles northwest of the town of Upper Marlboro in Maryland. The Landfill encompasses about 1,250 acres; less than 25 percent of the property is currently used for landfill cells. Existing disposal areas of the Landfill are divided into two (2) primary areas: Areas A and B. Area A, approximately 150 acres, stopped accepting waste in 1993 and is separated into two (2) sub-areas: Areas A-1 and A-2. Area B, approximately 140 acres, began operations in 1992 and continues to accept MSW today.

The existing landfill is expected to reach its final permitted capacity in approximately three and a half (3.5) years, near the end of 2024. In order to meet the County's MSW management needs beyond 2024, the County plans to infill the airspace between the existing landfill disposal areas, deemed the Area C Infill.

The proposed Area C Infill will span approximately 216.5 acres within the existing site boundaries. About 165 acres of this area will overlay onto the existing fill areas and the existing waste footprint will be increased by about 52.5 acres. It will add about 30 million cubic yards of airspace and extend the life of the Landfill for an additional 50 years beyond 2025.

The County has since submitted a Phase I Report [18] to MDE and was informed that the Phase I Permit Application was complete on February 7, 2020.

1.1 PURPOSE

This Phase II Geology and Hydrology Report (Phase II Report) assessment for the proposed disposal Area C Infill is intended to meet the reporting requirements addressed in COMAR 26.04.07.07. This report includes a summary of the soils, geology, and hydrology of the site, as well as a conceptual design for the proposed bottom liner and leachate collection and pretreatment systems.

1.2 PHASE II REPORT REQUIREMENTS

A checklist for the Phase II Report as per the requirements identified under COMAR 26.04.07.07.C and corresponding report sections relevant to the requirements are provided in Table 1 below. Moreover, the table serves as a reference that corresponds the requirements to the relevant report sections.

Table 1. Phase II Report Checklist

COMA	AR 26.04.07.07.C Sanitary Landfills - Municipal Landfills - Phase II Report	Section of Phase II Report	
(1)	Up-to-date site-specific topographic map using contour intervals which is practical for the site. The following items shall be shown on the map: (a) Surface water and natural drainage features; (b) 100-year flood-plain; (c) Property lines; (d) On-site buildings and structures; (e) Forested and other vegetated areas; and (f) Any buried or overhead transmission lines, utility pipelines, or storage tanks.	Section 2.2 and Exhibit II-1	
(2)	A discussion of the geologic formations directly underlying and in close proximity to the site, the present and projected use of these formations as a source of ground water and minerals, and the hydrogeologic relationship between the formations.	Sections 3.1 through 3.5 and Section 4.2; Exhibit II-3; Appendix II-A; Attachments 1 through 3	
(3)	A survey of all production wells within 1/2 mile of the site boundary. Each well shall be located on the topographic map and a table shall be developed which specifies all the available pertinent information such as well depth, screen type, productivity, materials encountered, and water level.	Section 4.1 Table 2; Exhibit II-8; Appendix II-B	
(4)	Groundwater contour maps to show the occurrence and direction of groundwater flow beneath the site superimposed on the current topographic map. Three separate groundwater contour maps as specified below shall be constructed for each distinct water-bearing formation occurring within 50 ft of the anticipated lowest elevation of the refuse cell floor, using monthly groundwater elevation data collected from piezometers on the site over a period of not less than 12 months, or derived using a hydrologic simulation or prediction technique approved by the Department. Three groundwater contour maps shall be constructed from a set of: (a) Water elevations measured or predicted during the month that represents the most: (i) Elevated groundwater condition, (ii) Depressed groundwater condition; and (b) The highest observed or predicted ground water elevations.	Sections 4.3 and 4.4; and Exhibits II-9 through II-11, Exhibits II-C-1 through II-C-10; Appendix II-C	
(5)	Geologic cross sections in sufficient detail, orientation, and number to clearly identify subsurface conditions at the site.	Section 3.5; Exhibits II-2 and II-4 through II-6 and II-19	
(6)	A bedrock map, except in the coastal plain outside the fall zone, to show the contours of the bedrock surface beneath the site.	N/A due to coastal plain physiography	
(7)	An isopachous map to show the minimum thickness of soil and other unconsolidated sediments above the elevation of ground	Section 3.8 and Exhibit II-7	

COM	AR 26.04.07.07.C Sanitary Landfills - Municipal Landfills - Phase II Report	Section of Phase II Report
	water as determined in $SC(4)$, or bedrock as determined in $SC(6)$, of this regulation, whichever is the higher.	
(8)	A discussion of the chemical quality of groundwater in the aquifers beneath the site as determined in §C(2) of this regulation. The list of chemical parameters shall include pH, alkalinity, hardness, chloride, specific conductance, nitrate, chemical oxygen demand, arsenic, barium, cadmium, chromium, zinc, lead, mercury, the volatile priority pollutants, and any other pollutants specified by the Department.	Section 4.5; Appendix II-H
(9)	A discussion of the potential for the vertical and horizontal movement of pollutants into the waters of this State.	Section 4.6
(10)	The results of a fracture trace or aerial photographic lineament analysis (except in the coastal plain) which identifies the relationship between these features and the local groundwater hydrology.	N/A due to coastal plain physiography
(11)	Test boring logs, well completion reports, piezometric measurements, chemical and physical soil/sediment analyses, and all accompanying geotechnical analyses. All laboratory and field methodologies and procedures shall be included.	Exhibits II-2A through II-2E; Attachments 1 through 4
(12)	A preliminary conceptual design of the proposed municipal landfill based on the geotechnical information gathered in $\S C(1)$ —(11) of this regulation. The landfill design shall satisfy the following minimum design standards:	Section 5 and Exhibits II-12, II-20, and II-21
	 (a) A liner system that is designed, constructed, and installed to facilitate collection of leachate generated by the landfill and to prevent migration of pollutants out of the landfill to the adjacent subsurface soil, groundwater, or surface water. The liner may be constructed of natural earthen materials which are excavated from the site or which are imported from another location or of a synthetic or manufactured membrane material. The liner system shall be: (i) Constructed of materials that have sufficient strength and thickness to prevent failure due to pressure gradients, physical contact with the waste or leachate, climatic conditions, the stress of installation, and the stress of daily operation. (ii) A minimum of 1 foot of clay or other natural material having an in-place permeability of less than or equal to 1 × 10-7th centimeters/second, or one or more unreinforced synthetic membranes with a combined minimum thickness of 50 mil, or a single reinforced synthetic membrane with a minimum thickness of 30 mil, which has a permeability less than or equal to 1 × 10-10th centimeters/second, placed over a prepared subbase with a minimum thickness of 2 ft and a permeability less than or equal to 1 × 10-5th 	Sections 5.1 through 5.3; Exhibits II-13 through II-17; Appendices II-D, II-E, and II-G

COMAR 26.04.07.07.C Sanitary Landfills - Municipal Landfills - Phase II Report	Section of Phase II Report
centimeters/second. The Approving Authority may authorize the installation of a liner system with specifications different than those listed in this subparagraph only upon a successful demonstration by the applicant that the alternate system is capable of collecting and managing the leachate generated at the site, and that the liner system provides an equivalent level of protection to public health and the environment. (iii) Placed upon a foundation or base capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement, compression, uplift, puncture, cutting or activities at the landfill. (iv) Installed to cover all surrounding earth likely to be in contact with the waste or leachate. (v) Installed with a minimum slope of 2 percent to facilitate movement of leachate towards the leachate collection system and prevent leachate ponding on the landfill floor.	
(b) The liner system shall be located entirely above the composite high water table as determined in §C(4)(b) of this regulation, and bedrock as determined in §C(6) of this regulation. A minimum buffer distance, including the thickness of the prepared subbase, shall be required between the bedrock elevation and the maximum expected groundwater elevation, and the bottom of the liner system, as follows: (i) Except as specified in §C(12)(b)(ii) of this regulation, the minimum buffer distance shall be 3 ft (ii) In Queen Anne's, Talbot, Caroline, Dorchester, Wicomico, Somerset, and Worcester Counties, the minimum buffer distance shall be 1.5 ft unless the Department determines from the available hydrogeological data that the site can provide an additional buffer. In these instances, the Department shall set a minimum buffer between 1.5 and 3.0 ft	Section 5.1.2 and Exhibit II-20
(c) A leachate collection and removal system located immediately above the liner, that is designed, constructed, maintained, and operated to collect and remove leachate from the landfill. The leachate collection and removal system shall be: (i) Constructed of materials that are chemically-resistant to the waste managed in the landfill and the leachate expected to be generated, and of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying wastes, waste cover materials, and by any equipment used at the landfill; (ii) Designed and operated to function without clogging; and	Section 5.4; Exhibits II-13 and II-18; and Appendix II-F

COMAR 26.04.07.07.C Sanitary Landfills - Municipal Landfills - Phase II Report	Section of Phase II Report
(iii) Designed and operated to ensure that the leachate	
depth over the liner does not exceed 30 centimeters (1	
foot).	

2.0 GENERAL SITE DESCRIPTION

2.1 SITE BACKGROUND

The Landfill is a refuse disposal facility classified with a primary SIC code of 4953 (Refuse Systems) and NAIC code of 562212 (Solid Waste Landfill). It has served as a landfill since 1968. It accepts MSW including, but not limited to, mixed household and commercial refuse, tree and shrub trimmings, household appliances and white goods, friable asbestos, scrap tires, and metal. Refer to Section 6.2 of the Phase I Report [18] for further details on the types of waste accepted. Waste is accepted from commercial contractors as well as private citizens.

Currently, less than 25 percent of the property is covered by the waste footprint. The remaining area is used for buffers, roads, soil storage, administration, and other ancillary facilities (e.g., leachate management, recycling, storage, vehicle maintenance, drainage and sedimentation control, and landfill gas management). Refer to Section 3.3 and Exhibits 4 and 5 of the Phase I Report for zoning and land use information.

The Landfill is operated in accordance with current federal, state, and local requirements. Stormwater is directed off the Landfill, by engineered downchutes and channels, into sedimentation basins. This system significantly reduces sediment loads and pollutants prior to discharge into surface waters.

Area A is closed and capped with a geomembrane liner system. Area B is presently active and accepting MSW. The site consists of two (2) 750,000-gallon holding tanks and a leachate pretreatment plant (LPP) that stores and treats leachate collected from Area B.

2.2 UP-TO-DATE SITE-SPECIFIC TOPOGRAPHIC MAP

An up-to-date site-specific topographic map based on a January 17, 2020 flyover is provided in Exhibit II-1. The map is presented on a scale of 1-in equals 300 ft on a 36-in \times 24-in sheet with surface contours at 10-ft intervals. The following features are identified in this recent topographic map:

- (1) Surface water features within the vicinity of the Area C Infill:
 - a. Cabin Branch: Located south of Brown Station Road.
 - b. Turkey Branch Creek: Borders the western portion of the site and flows into Western Branch.
 - c. Western Branch: Borders the site to the north and east and flows into the Patuxent River several miles southeast of the facility.
- (2) Wetlands:
 - a. Located mainly north and east of the existing landfill footprint along Turkey Branch and Western Branch.

- b. The County recently submitted a Wetlands Delineation Report (which includes a natural resource inventory and floodplain delineations) to the Maryland-National Capital Park and Planning Commission, Prince George's County Planning Department for review and approval, with consideration given to the recent Navigable Waters Protection Rule: Definition of "Waters of the United States" that went into effect on June 22, 2020.
- (3) Surface water and natural drainage features
- (4) Approximate 100-year floodplain line based on FEMA floodplain surface elevation data and recent aerial topography
 - a. A floodplain delineation plan is being submitted to document the floodplain line north of Area B based on a field survey performed by a Maryland-Licensed Land Surveyor.
- (5) Property lines (Refer to Exhibits 4 and 5 of the Phase I Report)
- (6) On-site buildings and structures
- (7) Forested and other vegetative areas
- (8) Buried/overhead utilities, including:
 - a. Transmission lines
 - b. Utility pipelines such as water, landfill gas, leachate, and condensate pipelines

3.0 GEOLOGY AND HYDROGEOLOGY

As the site has been operating as a landfill for over 50 years, there is a long history of geology/hydrology/geotechnical investigations and reports [2,3,5] that have been prepared, which includes the area that will encompass the Area C Infill. Refer to Exhibit II-2 for locations of borings/wells in and around the Landfill. A summary of the geologic formations, present and projected use of geologic formations, hydrogeologic relationships, soils and other unconsolidated sediment above the groundwater, geologic cross-sections, and bedrock presence is presented in this section.

3.1 PHYSIOGRAPHY

The site is located within the Atlantic Coastal Plain Physiographic Province (Coastal Plain). The landform is moderately to well-dissected upland with hillocks, largely occupying the interfluve between the Patuxent and Chesapeake watersheds. Northwest of the Coastal Plain is the Piedmont Plateau Physiographic Province and eastwards is the Atlantic Continental Shelf Province (off-shore), which extends to the Atlantic Ocean. The separation of the Coastal Plain and Piedmont provinces is known as the "Fall Zone", and is located approximately 15 miles northwest of the site (Exhibit II-3).

3.2 GEOMORPHOLOGY

The County consists of unconsolidated to semi-consolidated Coastal Plain sediment deposits of the Pleistocene to Cretaceous age. Deposits range from a high level of vertical and lateral homogeneity to a high level of variable localized heterogeneity. The Pleistocene lowland deposits (including what was formerly known as the Wicomico formation) consist of gravel, sand, silt, and clay deposits. These sediments have been deposited on the older consolidated rocks of the Triassic and Precambrian or early Paleozoic Age. In the extreme northwest of the County, the older rocks are exposed at the surface and the coastal sediments are absent. The sediments increase in thickness southeastwards and are approximately 1,100 ft thick near the site.

The stratigraphy of the Coastal Plain sediments in Prince George's County are shown on Table A-1 of Appendix II-A.

3.3 REGIONAL GEOLOGY

The Geologic Map of Prince George's County (Exhibit 8, Phase 1 Report [18]) identifies the site vicinity as chiefly being Terrace deposits, such as medium to coarse sand, pebbly sand, and subordinate silt-clay. The Terrace deposits were produced as a result of stream erosion during the early Quaternary and are now isolated along the valley walls above the modern floodplain due to renewed downcutting. These sediments are contained in a series of disjunct bodies flanking the major streams in the County, reaching elevations of nearly 160 ft in some portions and declining to near sea level closer to the Patuxent River.

Alluvium deposits are also found within the site vicinity as interbedded sand, silt-clay, and subordinate gravel. These deposits commonly underlay the channels and valley floors of all major and many minor streams in the County. Thicknesses of alluvial sediments range from less than 5 ft to 40 ft and average around 15 ft. Geologically, these sediments have mostly been deposited within the past 10,000 years. Refer to Exhibit 8 of the Phase I Report for a more detailed description of the regional geology.

3.4 SITE GEOLOGY

3.4.1 Soils

A detailed description of the soils at the Landfill can be found in Exhibit 6 of the Phase I Report [18]. The majority of Area C (about 165 acres) will overlap the existing landfilled areas, Areas A-1, A-2, and B.

3.4.2 Geology and Hydrogeologic Setting

As mentioned, Prince George's County's Landfill is located in the Coastal Plain of Maryland. According to the 1981 Geologic Map of the Upper Marlboro Quadrangle and the 1968 Geologic Map of Maryland, the Landfill overlies Quaternary Alluvium and Terrace Deposits, which overlay the Tertiary Nanjemoy and Aquia Formations. Refer to the Phase I Report for these maps and further details.

The alluvium can range in thickness from 3 to 15 ft. Alluvium derived from areas underlain by the Nanjemoy and Aquia Formations is predominantly a tan, brown, or pale to dark gray sand with variable glauconite content. The terrace deposits can range in thickness from 3 to 15 ft and consist of tan, reddish brown, or gray interbedded quartz sand and pebbly sand, glauconitic in part, with veins of quartz gravel and thin silty clay beds in places.

The uppermost aquifer beneath the Landfill is encountered in the unconfined soil matrix of the Nanjemoy Formation. The Nanjemoy Formation can range in thickness from 3 to 60 ft and it contains the Marlboro Clay Member at the base of the formation. The Nanjemoy Formation consists of the following:

 dark green to gray, argillaceous (clayey), glauconitic (green color), fine- to mediumgrained sand minor amounts of gray to pale brown clay

The Aquia Formation can range in thickness from 3 to 140 ft and consists of dark green to gray-green, argillaceous, highly glauconitic, well sorted fine- to medium-grained sand, and contains layers of calcareous shelly sandstone.

The gamma ray logs of the wells A-1, A-2, A-3, A-4, M-1, M-2, M-3, and M-4 provided in the report titled Hydrogeological Characterization of Brown Station Road Sanitary Landfill Area "A" Phase 2 (electronic copy of the report included as Attachment 2) shows that the Aquia Formation underlying the site is at least 70 ft below ground. The Aquia Formation is underlain by the low permeability Brightseat/Monmouth Formation for at least another 40 ft, which is the lower confining layer for the Aquia aquifer and also the upper confining layer for the Magothy aquifer. The Magothy Formation exists below the Brightseat/Monmouth Formation.

Since the Landfill is active, hydrologic evaluations are performed semiannually to confirm that the existing background and compliance groundwater monitoring network satisfies the requirements of 40 CFR 258.51. To perform this evaluation, current and historical groundwater elevations are tabulated and reviewed [10,11,12].

Based on recent groundwater elevations measured in March 2020 and August 2020 from the uppermost aquifer groundwater wells, a groundwater contour map [¹¹] was created to assess groundwater flow direction. Groundwater contours were generated via the Surfer™ surface mapping system software (Golden Software V7.04) using the kriging gridding method and altered utilizing professional judgement. An assessment of the groundwater flow direction was performed to establish which wells installed within the uppermost aquifer are located up-gradient, down-gradient, or cross-gradient of the Landfill. Below are the uppermost aquifer groundwater flow direction observations:

- The uppermost aquifer flows north, northeast, and east across the site.
- Groundwater monitoring wells A-1, A-4, A-10, A-11, B-8 through B-10 are up-gradient of the Landfill.
- Compliance groundwater monitoring wells A-2, A-3, A-15, A-17 through A-20, A-22, A-23, B-1, B-2R, B-3, B-4, B-6R, and B-7 are down-gradient or cross-gradient of the Landfill.

3.5 GEOLOGIC CROSS-SECTIONS

Well boring and construction logs are provided in Appendix C in Attachment 1, Appendix B in Attachment 2, Appendix A in Attachment 3, and Attachment 4. Exhibits II-2A through II-2E provide a summary of the boring logs. The geologic cross-sections interpolated from the well logs (Exhibits II-2A through II-2E) are presented in Exhibits II-4 through II-6 and II-19. The layout is shown in Exhibit II-2. These cross-sections were selected to understand the subsurface conditions of the proposed Area C Infill. A summary of the strata encountered is as follows:

• Stratum 1A/1B: The uppermost stratum consists of fill material that ranges from 0 to approximately 10 ft in depth. The fill layer is highly variable and contains both granular and cohesive type materials. Standard penetration resistances (N values) ranged from 3 to 29 blows per foot, indicating a wide variation in shear strength characteristics.

- Stratum 2A/2B/2C: This stratum consists of loose, coarse-grained and soft, fine-grained native soils, ranging in depth from ground surface to 30 ft below grade. N values for the coarse-grained sandy soils in this stratum ranged from weight of hammer (WOH) to 16 blows per foot, indicating low shear strength characteristics. N values for the clayey finegrained soils ranged from 2 to 12 blows per foot.
- Stratum 3: Stratum 3 is a medium dense, fine to medium sand encountered at depths ranging from approximately 2 to 35 ft. N values for this stratum ranged from 16 to 32 blows per foot.
- Stratum 4: Stratum 4 directly underlies Stratum 2 or Stratum 3. It consists of dense to very dense, fine, silty sand of the Aquia Formation. N values vary from 32 to 100 blows per foot.
- Strata 5 & 6: Strata 5 and 6 underlie Stratum 4. It consists of very dense granular and cohesive material with N values ranging from 60 to 120 blows per foot. Only four wells (M1, M2, M3, and M4) were dug deep below the MSL to reach these strata.

3.6 BEDROCK MAP

The site is located in the Atlantic Coastal Plain outside of the Fall Zone (Exhibit II-3). As such, a bedrock map is not required [COMAR 26.04.07.07.C.(6)]. In Prince George's County, the bedrock (Pre-Cetaceous) is about 1000 - 2000 ft below the MSL [4].

3.7 FRACTURE TRACE ANALYSIS OR AERIAL PHOTOGRAPHIC LINEAMENT ANALYSIS

As stated earlier, the site is located in the Atlantic Coastal Plain. Therefore, fracture trace analysis or aerial photographic lineament analysis is not required [COMAR 26.04.07.07.C.(10)].

3.8 AN ISOPACHOUS MAP OF SOIL AND OTHER UNCONSOLIDATED SEDIMENTS ABOVE GROUNDWATER

The isopachous map of soil and other unconsolidated sediments above groundwater level was plotted by comparing the spot elevations from a January 2020 topographic map to the maximum groundwater levels (Exhibit II-7). As shown, the minimum depth of unconsolidated sediments above groundwater in the non-piggyback areas of the Area C Infill, other than streams and sedimentation basins, ranges from 0 to 18 ft.

4.0 GROUNDWATER

4.1 INVENTORY OF PRODUCTION WELLS

In response to SCS's request under the Public Information Act (PIA), the Water and Science Administration of MDE provided pertinent information regarding the production wells located in the vicinity of the Landfill (Tracking Number 2019-02778). Table B-1 in Appendix II-B provides pertinent information about production wells within ½ mile of the Area C Infill boundary and Exhibit II-8 shows a map of production wells. Considering water usage, Table B-1 and Exhibit II-8 show that there are:

• 62 wells for drinking water (identified as DW wells)

- Four (4) DW wells in the Water Science Administration's record that do not exist, and
- Five (5) wells for irrigation/farming (identified as IFW wells)

Well depths, pumping rates, depths of top-of-well screen, and lengths of well screen information for DW, IFW, and TW wells are summarized in Table 2 below.

Table 2. Pertinent Information on Production Wells in the Area C Infill Vicinity (Brown Station Road Sanitary Landfill)

Type of	No. of	Well Depth (ft)		Pumping Rate (GPM)		Well-Screen- Top Depth (ft)		Well Screen Length (ft)	
Production Well	Wells	Max	Min	Max	Min	Max	Min	Max	Min
DW Wells:	62								
• < 50 ft deep	1	2	.7	6		N/A	A	N,	/A
• 100 – 200 ft deep	10	200	102	50	5	183	94	10	5
• > 200 ft deep	41	316	208	120	9	303	190	32	5
IFW Wells	5	305	220	50	10	295	211	10	5

Notes: 1. ft, GPM, max, min, and N/A refers to foot (feet), gallons per minute, maximum, minimum, and not applicable, respectively.

- 2. Wells with missing parameter information were not included in calculations.
- 3. Well depth, GPM, and well screen data were not available for 10 DW wells.

4.2 PRESENT AND PROJECTED USE OF GEOLOGIC FORMATIONS AS A SOURCE OF GROUNDWATER

The geological formations underlying the site are discussed in Section 3.4.2. The uppermost aquifer, Aquia, is encountered in the unconfined soil matrix of the Nanjemoy Formation, and is found in the subsurface of the site (Attachment 2). The Marlboro Clay Member, with its low permeability, is considered to be in the upper confining bed of the Aquia Formation, indicating a limited capacity to transmit water and vertically recharge the Aquia. The Marlboro Clay Member is discontinuous and disjoint. Where present above the Aquia aquifer, the direct recharge of the aquifer by vertical infiltration would also be extremely limited. This is apparent by the presence of mottling in the soil above the Marlboro Clay on-site, indicating that water is perched above the clay and moves laterally rather than vertically. As a result of the limited presence and discontinuous nature of Marlboro Clay on this site, its effect on the groundwater regime of the site is very limited and localized.

Comparison of the elevations of the well screens of greater than 100 ft deep wells to the elevation of the top of the uppermost sand of the Magothy Formation indicates that these wells all pump from the Magothy Formation (deep). Hence, the major regional aquifer acting as a source of groundwater in the area around the Landfill is Magothy, which is separated from the Aquia aquifer by the Aquia Formation, followed by the low permeability Brightseat/Monmouth Formation (Attachments 1 and 2).

MGS recommended no new Pleistocene (shallow) or Aquia water supply wells be drilled within approximately 1,500 ft of the site and no new Pleistocene or Aquia wells yielding more than 15 GPM be drilled within 2,500 ft of the site. The purpose of this recommendation was to maintain the natural gradient towards Western Branch [1]. Exhibit II-8 shows the production wells within ½ mile of

the site boundary and Appendix II-B provides related well data, including well depth and usage details. Out of the 170 wells in the Area C Infill vicinity, there are 62 DW wells and five (5) IFW wells. Of the 62 DW documented wells, 52 DW wells' depths are known: one (1) well is 27 ft deep, 10 wells are 100 to 200 ft deep, and 41 wells are greater than 200 ft deep. All DW wells located onsite were constructed after 1967. The production wells in the Landfill vicinity are unlikely to be affected by the Area C Infill for the following reasons:

- Most of the drinking water of the nearby residential areas are supplied by the Washington Suburban Sanitary Commission (WSSC), with an exception of a few older homes. Hence, a change in the usage of groundwater is not expected due to the Area C Infill project.
- The groundwater quality since the operation of the Landfill has not been significantly affected.
- None of the shallow wells located in the vicinity of the Landfill have a pumping rate greater than 15 GPM.
- The hydrogeological investigations performed (Attachment 2) on the underlying formations and groundwater flow relationships between the Aquia aquifer and the Magothy aquifer indicate that the hydraulic conductivities in the most permeable zones of Aquia Formation were in the order of 10⁻⁴ to 10⁻⁶ cm/s. Further, the Magothy aquifer is separated from the Aquia aquifer by the Brightseat/Monmouth Formation, which has a hydraulic conductivity ranging from 1.56 x 10⁻⁷ cm/s to 7.13 x 10⁻⁸ cm/s. This indicates that the Brightseat/Monmouth Formation is a low permeability/impervious layer, potentially restricting the potential vertical flow of pollutants. Therefore, the Landfill operations will not potentially impact the Magothy aquifer.
- Four (4) DW wells located within the Area C Infill (DW-29, DW-33, DW-34, and DW-59) no longer exist.
- Western Branch serves as a water divide between the Landfill and the DW wells on the north side of the facility property.

4.3 GROUNDWATER ELEVATION MONITORING

Groundwater monitoring (GWM) at the Landfill started in 1985 for Areas A-1 and A-2 and in 1989 for Area B. In accordance with the site's Refuse Disposal Permit (RDP), the Landfill performed two (2) monitoring events semiannually. Since 2005, the Landfill began monthly GWE monitoring.

Initially, the GWM network comprised of the following wells shown in Table 3:

Table 3. Initial Groundwater Monitoring Network

Category	Area A	Area B	
Up-gradient Wells	A-1, A-4, A-10, and A-11	B-8 through B-10	
Down-gradient or Cross-gradient Wells	A-2, A-3, A-15, A-17 through A-20, A-22, and A-23	B-1, B-2R, B-3, B-4, B-6R, and B-7	

Other Wells	A-5 through A-9, A-12 through A-14, A-16, A-21, PP-1A, PP-1B, PP-2A,
	PP-2B, PP-3A, PP-3B, PP-5A, PP-5B, PP-6A, PP-6B, and PP-8

4.3.1 Groundwater Monitoring Network History

The GWM network modification history is briefly summarized below.

- In 1995, GWM well B-5 was abandoned.
- In 2002, GWM wells PP-3A and PP-3B were abandoned.
- In March 2003, GWM well B-6R was installed adjacent to GWM well B-6 as its replacement well. Well B-6R serves to monitor the uppermost aquifer in a manner that is more representative of the actual conditions. In June 2005, GWM well B-6 was abandoned.
- In February-March 2005, GWM well B-6A was installed and later abandoned in June 2005.
- In June 2005, down-gradient GWM wells A-22 and A-23 were installed as requested by MDE. Well A-22 was installed down-gradient of well A-2 and well A-23 was installed down-gradient of well A-16.
- GWM well B-2 was damaged during construction of Cells 1 and 11. In August 2007, well B-2 was repaired.
- In June 2008, GWM well B-2R was installed about 100 ft east of GWM well B-2 as its replacement well. Well B-2 was not abandoned.
- Additional GWM wells were installed as part of NEIs:
 - o In 2014, GWM wells NES-1D, NES-1S, NES-4, and NES-5 within B-6R Area of Concern and GWM wells NES-2D, NES-2S, and NES-3 within A-2 Area of Concern.
 - o In May through November 2015, GWM wells NES-6D and NES-6S and deep GWM well NES-2DD within A-2 Area of Concern.
 - o In June 2017, GWM wells A-22D, NES-7S, and NES-7D within A-2 Area of Concern.
- In June 2017, GWM well A-22D was installed.
- In September 2018, GWM well A-22DD was installed.
- In September 2019, GWM well A-22DD-A was installed and GWM well A-22DD was abandoned.

Western Branch isolates the north side groundwater elevations from the south side. Therefore, the monitored groundwater table on the north side of Western Branch does not affect the monitored/estimated groundwater table on the south (landfill) side of Western Branch.

4.3.1 Groundwater Monitoring Wells Network

The GWM well network monitored between 2005 and 2020 and their locations relative to Western Branch are summarized Table 4 below.

Table 4. Groundwater Monitoring Wells Network (Brown Station Road Sanitary Landfill)

Category	Wells North of Western Branch			
Up-gradient Wells	Up-gradient Wells A-1, A-4, A-10, A-11, and B-8 through B-10			
Down-gradient or Cross-gradient Wells	A-2, A-3, A-15, A-17 through A-20, A-22, A-23, B-1, B-2, B-2R, B-3, B-4, B-6, B-6A, B-6R, and B-7			
Other Wells	A-12 through A-14, A-16, A-21, A-22D, A-22DD, A-22DD-A, NES-1D, NES-1S, NES-2S, NES-2D, NES-2DD, NES-3, NES-4, NES-5, NES-6D, NES-6S, NES-7D, NES-7S, NES-8S, PP-1A, PP-1B, PP-2A, PP-2B, PP-5A, PP 5B, PP-6A, PP-6B, and PP-8	A-5, A-6, A-7, A-8, and A-9		

In summary:

- 58 GWM wells are located on the south side of Western Branch and five (5) wells are located on the north side of Western Branch.
- Seven (7) GWM wells (A-1, A-4, A-10, A-11, B-8 through B-10) are located up-gradient of the Landfill.
- 18 GWM wells (A-2, A-3, A-15, A-17 through A-20, A-22, A-23, B-1, B-2, B-2R, B-3, B-4, B-6, B-6A, B-6R, and B-7) are located down-gradient or cross-gradient of the Landfill.

4.3.2 Groundwater Elevation Data Analyses

As stated earlier:

- The uppermost aquifer beneath the Landfill is an unconfined soil matrix of the Nanjemoy Formation.
- Aquia is an important aquifer in the subsurface on the site and the Marlboro Clay
 Member is considered an upper confining bed for the Aquia aquifer. Due to its limited
 presence and discontinuous nature, the effect of Marlboro Clay on the groundwater
 regime of the site is localized and insignificant. Furthermore, the water in the uppermost
 aquifer is perched above the Marlboro Clay member and moves laterally rather than
 vertically.
- The unconfined Aquia aquifer is the only aquifer encountered within 70 ft of the anticipated landfill floor. The Magothy aquifer was found to be deeper than 90 ft at the site.
- Groundwater levels on the north side of Western Branch do not affect groundwater elevations on the south side of the Landfill.

• The unconfined uppermost aquifer flows north and northeast across the site and likely discharges laterally to surrounding wetlands, Turkey Branch, and Western Branch.

Noting the above, the monthly GWE data from 2005 through 2020 was analyzed for all wells on the south side of Western Branch to determine the most:

- Elevated groundwater condition,
- Depressed groundwater condition, and
- Highest groundwater elevation.

GWM wells on the south side of Western Branch were split into two subsets: (1) critical wells subset comprising of wells located in the non-overlap portion of the Area C Infill and (2) other wells subset comprising of all wells on the south side of Western Branch not included in the critical wells subset.

The location of the BL system is determined based on the highest groundwater elevations. The measured data may have potential outliers, which are generally the extreme, unusual-looking, large or small measurements relative to rest of the data and are suspected of misrepresenting the population from which they are sampled. These outliers generally result from transcription or data-coding errors or inaccurate measurement. Inclusion of outliers in the determination of the highest groundwater would incorrectly predict highest groundwater elevation, resulting in:

- Reduction in airspace available for waste placement and
- Increased cost to expand horizontally to compensate for the lost airspace.

The outlier analyses performed is provided in Appendix II-C.

4.4 GROUNDWATER CONTOUR MAPS

Monthly GWE monitoring data of the critical wells subset comprising of GWM wells within the non-layover portion of the Area C Infill and other wells subset from 2005 through 2020 is presented in Table C-1 of Appendix II-C. Results indicated that the maximum average GWE of the critical wells subset occurred in May 2019 and the minimum average GWE occurred in October 2016. Therefore, the elevated and depressed GWE conditions were assumed to have occurred in May 2019 and October 2016, respectively.

The elevated, depressed, and maximum GWE conditions at the critical wells subset and other GWM wells is presented in Table C-1, Appendix C. Results for the critical wells subset are summarized below:

- Average elevated groundwater level was about 47.19 ft AMSL.
- Average depressed groundwater was about 4.5 ft below the elevated groundwater levels.

Based on the GWE data in Table 5 and the latest site topography, three (3) groundwater contour maps were generated using the surface mapping system software Surfer™ (Golden Software V7.04). The kriging gridding method and professional engineering judgment were utilized in the generation of these groundwater contour maps. Elevated, depressed, and highest groundwater conditions at the Landfill are provided in Exhibits II-9 through II-11, respectively. Based on these groundwater contours, the observed groundwater flow directions in the uppermost aquifer are north, northeast, and east across the site.

Table 5. Elevated, Depressed, and Highest GWE Conditions at Critical and Other GWM wells

Well ID	Groundwater Elevation (ft, AMSL)			
	Elevated Groundwater (5/13/2019)*	Depressed Groundwater (10/28/2016)	Highest Groundwater (2005 to 2020)	
A. Up-gradie	ent GWM wells:			
A-1	46.25	57.31+	48.10	
A-4	60.19	58.35	61.75	
A-11	75.31	82.02+	75.63	
B-8	81.17	79.10	83.59	
B-8	81.17	79.10	83.59	
B-9	81.56	78.99	83.29	
B-10	81.73	77.94	84.11	
B. Down-gra	dient or Cross-gradient GWA	Λ wells:		
A-2	32.25	30.69	35.15	
A-3	29.69	24.70	29.80	
A-15	37.11	36.53	39.17	
A-17	32.63	30.21	33.26	
A-18	29.50	28.55	30.96	
A-19	30.27	28.72	32.07	
A-20	32.66	29.44	33.38	
A-22	29.47	28.14	30.00	
A-22D	31.55		31.96	
A-23	33.92	31.67	33.92	
B-1	36.97	37.33	41.17	
B-2	42.34	37.94	45.71	
B-2R	39.04	41.61	43.27	
B-3	41.60	40.68	43.28	
B-4	50.33	50.17	51.88	
B-6R	56.59	55.61	57.52	
B-7	73.12	69.02	73.19	
C. Other GW	/M wells			
A-12	48.82	45.14	49.39	
A-13	42.65	41.80	42.83	
A-14	44.82+	35.28	39.65	

	Groundwater Elevation (ft, AMSL)			
Well ID	Elevated Groundwater (5/13/2019)*	Depressed Groundwater (10/28/2016)	Highest Groundwater (2005 to 2020)	
A-16	35.63	34.71	37.48	
A-21	52.89	51.32	53.59	
NES-1D	30.94	29.38	31.23	
NES-1S	31.42	29.84	31.84	
NES-2D	29.56	27.97	29.70	
NES-2DD	27.88	27.14	28.74	
NES-2S	49.19	47.65	50.74	
NES-3	58.02	56.77	58.64	
NES-4	29.19	27.77	29.39	
NES-5	27.98	26.97	29.40	
NES-6D			28.15	
NES-6S			32.90	
NES-7S	31.07	30.73	33.22	
NES-8S	30.92	30.56	33.12	
PP-1A	29.56	27.98	31.27	
PP-1B	29.63	28.04	31.44	
PP-2A	37.90	38.27	39.37	
PP-2B	37.73	38.14	39.10	
PP-5A	51.22	50.28	52.29	
PP-5B	51.12	51.78	53.69	
PP-6A	50.24	45.48	51.19	
PP-6B	48.82	45.14	49.39	
PP-8	42.65	41.80	42.83	

^{*} Date when measured

4.5 GROUNDWATER QUALITY

Sampling, analysis, and reporting of groundwater and surface water quality at the site dates back to 1985, more than 35 years ago. In summary,

- The groundwater quality is monitored on a semiannual basis. The GWM network is designed in accordance with the regulations, which require monitoring both upstream and downstream of the Landfill.
- To date, there are no GPS exceedances beyond the property boundary.

⁺ High outlier statistically significant at *P*-value < 0.05.

⁻⁻⁻ GWE not measured.

- In the site's history, there have been groundwater exceedances in a few onsite wells, but most have transitioned to the assessment monitoring program and back to detection monitoring. More recently, there are three areas of concern, only one of which (Area A-2) is presently being further investigated:
 - Manhole #8 (MH-8) Area of Concern In May 2012, a leachate seep was identified adjacent to MH-8. The seep was immediately repaired, and two sumps (PW-8 and PW-8A) were installed in the vicinity of MH-8 to remove groundwater from the affected area. Groundwater extraction from these sumps occurred from July 2012 through April 2014. Sumps PW-8 and PW-8A continue to be monitored as a precautionary measure.
 - B-6R Area of Concern Assessment monitoring began in 2006. For the purposes of delineating cadmium- and cobalt-affected groundwater in the vicinity and downgradient of compliance well B-6R, several groundwater monitoring wells were installed and classified as a performance or sentinel wells. To monitor the extent of the cadmium- and cobalt-affected groundwater, the performance well is monitored semi-annually and the sentinel wells are monitored annually for cadmium and cobalt only.
 - Area A-2 Area of Concern Area A-2 entered an assessment monitoring program in 1997. The present contaminants of concern are benzene, cis-1,2-Dichloroethene, and vinyl chloride. An NEI has been completed and awaits MDE approval followed by a proposal of an Assessment of Corrective Measures to evaluate remedial options. The extent of this area of concern appears to be about 100 feet downstream of A-2. This area is located on the east side of Area A-2.

Additional details are described in the following subsections.

4.5.1 Groundwater and Surface Water Quality Monitoring History

1985: Groundwater monitoring for Area A began. In addition, two (2) surface water locations (CX-1 and CX-3) on Western Branch around Area A were also monitored.

1989: The Area B groundwater monitoring program began.

1994: Sampling was initiated for two (2) additional surface water locations (CX-4 and CX-5) on Western Branch and Turkey Branch, upstream of the Landfill.

1997: An Assessment Monitoring Program was implemented for Area A in accordance with 40 CFR 258.55 for GWM wells A-2 and A-16.

March 2003: GWM well B-6R was installed as a replacement well for B-6 due to ongoing turbidity issues. B-6R was installed adjacent to B-6 but slightly deeper and produced enough water to be properly developed and sampled without turbidity issues. Thus, B-6R served to monitor the uppermost aquifer in a manner that was more representative of actual conditions.

June 2005: Down-gradient GWM wells, A-22 and A-23, were installed as requested by MDE in a letter dated 04/05/2004. A-22 was installed down-gradient of A-2. A-23 was installed down-gradient of A-16. In addition, GWM well B-6 was abandoned and replaced in the monitoring network with previously installed GWM well B-6R.

December 1, 2006: An Assessment Monitoring Program was implemented for Area B wells B-3 and B-6R in accordance with 40 CFR 258.55 due to inter-well exceedances of various metals during each 2006 semiannual monitoring event. B-7 was included in the assessment monitoring program for upgradient/background purposes.

June 2007: During the construction of Cells I & II in Area B, GWM well B-2 was damaged. On 08/23/2007, SCS oversaw the repair of B-2 as conducted by Groundwater Systems, Incorporated. A letter was submitted by SCS to MDE on 09/04/2007 documenting the repair and condition of B-2.

April 10, 2008: SCS notified MDE of the EPA-MCL exceedances detected in GWM well B-2 for the 2008 monitoring events and requested approval for installation of a replacement GWM well in the vicinity of GWM well B-2. In a letter dated 05/05/2008, MDE approved the installation of a replacement monitoring well. On 06/19/2008, SCS oversaw the installation of GWM well B-2R, approximately 100 ft east of GWM well B-2.

July 11, 2008: A request to replace GWM well B-2 with B-2R and subsequently abandon GWM well B-2 was submitted to MDE. In a letter dated 08/26/2008, MDE requested at least four (4) samples be collected from GWM well B-2R to conduct a comparative analysis prior to the abandonment of GWM well B-2.

2009: An inter-well exceedance was identified in GWM well A-22 for methylene chloride for the 1st semiannual 2009 monitoring event. Therefore, GWM well A-22 was added to the Area A assessment monitoring well network in accordance with 40 CFR 258.54 (c).

June 30, 2011: MDE was notified of the reclassification of GWM well B-3 to a detection monitoring well in the 1st semiannual 2011 Groundwater and Surface Water Monitoring Report (GSWMR) as Appendix II parameter concentrations had remained below background concentrations in GWM well B-3 since the 2nd semiannual 2008 groundwater monitoring event.

December 21, 2011: An updated Groundwater and Surface Water Monitoring Plan (GW & SWMP) was submitted to MDE.

April 30, 2012: A revised GW & SWMP was submitted to MDE based on comments provided by MDE in a letter dated 03/01/2012. The GW & SWMP was approved by MDE on 09/04/2012.

May 29, 2012: MDE was notified of the monitoring of the Area B underdrains conducted in April 2012 as a precautionary measure for detecting potential impacts from leachate. The April 2012 underdrain results did not indicate a potential impact. The County was subsequently instructed by MDE to monitor the Area B underdrains on a semiannual basis for the analysis of parameters listed in Tables I and II of the Landfill's RDP.

June 2013: GWM well B-7 was reclassified as a compliance well in response to comments provided in a letter from MDE dated 04/10/2013.

February 2016: An inter-well exceedance was identified in GWM well B-3 for cobalt in the 2nd semiannual 2015 monitoring event. Therefore, GWM well B-3 was added to the Area B assessment monitoring well network in accordance with 40 CFR 258.54 (c).

December 2016: An inter-well exceedance was identified in GWM well A-19 for barium in the 2nd semiannual 2016 monitoring event. Therefore, GWM well A-19 was added to the Area A assessment monitoring well network in accordance with 40 CFR 254.54 (c).

September 2017: An inter-well exceedance was identified in GWM well B-4 for cadmium. Therefore, GWM well B-4 was added to the Area B assessment monitoring well network in accordance with 40 CFR 258.54 (c).

August 6, 2019: MDE provided a response to the 2nd semiannual 2018 GSWMR with the following approvals or recommendations:

- Approved the recommendation to remove GWM well B-2 from the compliance monitoring well network and instead utilize GWM well B-2 as an additional well to help characterize groundwater flow.
- Recommended GWM well A-23 remain a compliance well and GWM well A-16 be
 maintained as an additional well for monitoring GWE as it may not be representative of
 groundwater quality at the compliance boundary.
- Recommended GWM well A-22 remain a compliance well rather than a performance well until the investigative work in the vicinity of GWM well A-2 is concluded.

October 4, 2019: A revised GW & SWMP was submitted to incorporate changes to the groundwater monitoring well network and address comments provided in the 08/06/2019 letter. MDE approved the GW & SWMP in a letter dated February 28, 2020.

4.5.2 MH-8 Area of Concern

Remediation and monitoring efforts conducted to-date to address the leachate seep issue in MH-8 are summarized below:

May 4, 2012: The County reported to MDE a leachate seep into a manhole (MH-8) located near GWM well A-12. The seep was noted during work to replace the leachate valves that shut off leachate from Cell 8 draining into MH-8. The seep appeared to come from around an overflow pipe that connects MH-8 to its adjacent valve manhole.

May 4 and 7, 2012: A sample of the liquid seeping into MH-8 was collected for the analysis of parameters listed in Tables I and II of the Landfill's RDP. Concentrations of six (6) metals (antimony, arsenic, chromium, cobalt, lead, and nickel) and two (2) volatile organic compounds (1,2-dichloroethane and benzene) were detected above GPS. Eight (8) VOCs were detected above the laboratory's limit of quantitation (LOQ), but below GPS. These monitoring results support a potential leachate impact.

May 9, 2012: A groundwater sample was collected from GWM well A-12 to assess if the leachate seep impacted local groundwater. Concentrations of two (2) metals (antimony and arsenic) were detected above GPS. 10 VOCs were detected above the laboratory's LOQ, but below GPS. These monitoring results supported a potential leachate impact.

May 10, 2012: Two (2) test pits were excavated adjacent to MH-8 on either side of the Cell 8 leachate header pipe draining into MH-8. Each test pit was about 16 to 17 ft deep (approximately 4 to 5 ft below the MH-8 seep penetration). The pits appeared to penetrate the groundwater table at

approximately 16 to 17 ft below grade. Groundwater appeared clear and no odors were noted; thus, no potential leachate impacts were observed. No liquids were flowing from the side walls of the test pits.

Areas adjacent to MH-8 were also investigated. Potential leachate-impacted water appeared to be ponding near GWM well A-12, at the outlet of an old abandoned culvert. The appearance of the leachate-impacted water appeared to terminate approximately 500 ft northeast of well A-12 and a few hundred feet before the nearest sedimentation basin. An earthen clay dam was constructed at the old abandoned culvert to contain and manage the liquids.

May 11, 2012: MDE was provided an update via email regarding MH-8 remediation efforts.

May 16, 2012: The old abandoned culvert located west of GWM well A-12 was exposed. Gravel material was found around culvert. Potential leachate impacts were observed in the liquid seeping from the gravel material.

May 17, 2012: The top of the leachate header pipe entering MH-8 cell valve was excavated and a Fernco fitting connecting the leachate header pipe to Cell 8 valve manhole was located. The Fernco fitting was loose and leaking; this appeared to be the source of the leachate seeps.

May 18, 2012: MDE was provided an update via email regarding MH-8 remediation efforts.

May 21, 2012: The replacement of leaking Fernco fitting with PVC flanged fittings and a spool piece made from HDPE pipe was completed.

May 22, 2012: A test pit (Test Pit #1) was excavated approximately 30 ft southwest of MH-8 uncovering a gravity leachate pipe. No potential leachate impacts were observed in the gravel bedding around the pipe.

May 23, 2012: MH-8 and valve MH penetration leaks were repaired with hydraulic cement. No leaks were observed from the new piping connecting to MH-8. A noticeable reduction in the seeping liquid filling the temporary clay-dammed area constructed at the outlet of the old abandoned culvert was observed. This suggested the source had been controlled.

May 24, 2012: MDE was provided an update via email regarding MH-8 remediation efforts. To evaluate the extent of potential leachate impacts down-gradient of GWM well A-12, three (3) GWM wells (A-13, A-14, and A-15) located down-gradient of well A-12 were sampled for the analysis of parameters listed in Tables I and II of the Landfill's RDP. No parameters were detected above GPS and no VOCs were detected above the laboratory's limit of detection (LOD). These monitoring results indicated the extent of potential leachate impact to groundwater was limited to the immediate vicinity of well A-12.

To evaluate the extent of potential leachate impacts to area surface waters down-gradient of A-12, the sedimentation basin located approximately 500 ft northeast of A-12 was sampled for the analysis of parameters listed in Tables I and II of the Landfill's RDP. No parameters were detected above the Landfill's GPSs and no VOCs were detected above the laboratory's LOD. These monitoring results indicated the extent of potential leachate impact were limited to groundwater in the immediate vicinity of A-12.

May 24, 2012: A test pit (Test Pit #4) was excavated 120 ft downstream of MH-8, near where the gravity leachate pipe crosses over the old abandoned culvert. The pit appeared to penetrate the groundwater table at approximately 16 ft below grade where the test pit was terminated. Potential leachate impacts were observed in the groundwater.

Test pits were excavated approximately 50 ft (Test Pit #5) and 100 ft (Test Pit #7) northeast of GWM well A-12 to a hard stone-like material at 10 ft below-grade. The soil in the test pits, 18 in above the stone-like material, contained gravel. No standing water was observed. Both of these test pits were backfilled upon completion of the investigation.

May 25, 2012: A test pit (Test Pit #6) was excavated approximately 150 ft northeast of MH-8, over the 12-in leachate gravity pipeline. The gravity leachate pipe was uncovered at approximately 14 ft below-grade. No potential leachate impacts were observed in the gravel bedding around the pipe. The test pit appeared to penetrate the groundwater table at approximately 18 ft below-grade. A slight discoloration (light brown tint) to the groundwater was observed.

In an effort to remove potentially impacted soil at the old abandoned culvert outlet, the adjacent soil was over-excavated and removed. The liquids seeping into the excavation were removed and within one (1) hour, the seep stopped. During removal of the seeping liquids, the color of the liquid seeping into the excavation appeared to become clear. The test pits were backfilled upon completion of the investigation, except for around the old culvert outlet.

May 30, 2012: A test pit (Test Pit #8) was excavated approximately 200 ft northeast of MH-8, over the 12-in leachate gravity pipeline. The gravity leachate pipe was uncovered at approximately 13 ft below-grade. No potential leachate impacts were observed in the gravel bedding around the pipe. Test pit was excavated to approximately 18 ft below-grade where the groundwater was anticipated to be encountered. No water was encountered. Excavation was left open for about six (6) hours. Approximately three (3) inches of water accumulated at the bottom of the excavation. The liquid was observed to be clear.

A test pit (Test Pit #9) was excavated approximately 150 ft northeast of GWM well A-12 to hard stone-like material at 14 ft deep. Standing water observed to be clear. Test pits were backfilled upon completion of the investigation.

May 31, and June 1, 2012: Potentially impacted soil material continued to be removed from around the old abandoned culvert. The area around culvert was backfilled with clean clayey material. An 11 ft deep sump (PW-8) was constructed near the culvert outlet to serve as a monitoring well/pumping well. This sump was constructed from an 8-in pipe; bottom 4 ft perforated pipe and gravel pack around perforations.

June 1, 2012: MDE was provided an update via email regarding MH-8 remediation efforts.

June 11, 2012: To monitor the effectiveness of the MH-8 remedial actions, a groundwater sample was collected from GWM well A-12 for the analysis of the Tables I and II parameters. Six (6) VOCs were detected above the laboratory's LOQ but below GPS. This is a significant improvement over the May 2012 monitoring results, thus supporting the effectiveness of the latest repairs to MH-8.

June 19, 2012: MDE was provided an update via email regarding MH-8 remediation efforts. In addition, monitoring results were provided from the May 2012 sampling of GWM wells A-12, A-13, A-14, A-15, and the down-gradient sedimentation basin.

June 29, 2012: MDE was provided an update via email regarding MH-8 remediation efforts. To continue to monitor the effectiveness of the MH-8 remedial actions, quarterly monitoring of GWM wells A-12, A-13, and A-14 for the analysis of Table I VOCs and the following Table II Metals: Antimony, Arsenic, Cobalt, Iron, and Manganese was proposed.

July 2012: A second sump (PW-8A) was installed approximately 30 ft northeast of GWM well A-12. Liquids appeared clear. The 11-ft deep sump was constructed from an 8-in pipe; bottom 4 ft perforated pipe and gravel pack around perforations. An extraction pump was installed in PW-8 approximately 3 to 4 ft into the water table. Pumping from PW-8 began on 07/27/2012. Extracted water was discharged to the existing leachate collection system.

November 26, 2012: Visual observations of liquid from PW-8 continued to indicate a potential leachate impact, as liquid remained dark in color. Liquid in PW-8A appeared slightly discolored.

November 27-29, 2012: Test pits were excavated along the leachate gravity line and similar findings from prior investigations were found (i.e. leak contained in same general area). Prior to the repair at the MH-8 valve manhole, excavation revealed a leak at the inlet to the manhole where the new Vanstone flange joined with the old PVC pipe. Associated repairs were completed on 12/04/2012.

November 29, 2012: MDE was provided an update via email regarding MH-8 remediation efforts. Quarterly monitoring of GWM wells A-12, A-13, and A-14 and sumps PW-8 and PW-8A for the analysis of Table I VOCs and Table II Metals: Antimony, Arsenic, Cobalt, Iron, and Manganese was proposed.

December 6, 2012: An extraction pump was installed in PW-8A approximately 3 to 4 ft into the water table and pumping was initiated. Extracted water was discharged to the existing leachate collection system.

December 10, 2012: The excavation for the MH-8 valve manhole repair was backfilled. In addition, a "leak observation well" was constructed at the repair location outside MH-8 valve manhole to monitor for potential future leaks.

December 13, 2012, July 1, 2013, & March 14, 2014: MDE was provided an update via email regarding MH-8 remediation efforts.

April 30, 2014: MDE approved the cessation of pumping at sumps PW-8 and PW-8A.

August 6, 2019: MDE approved the removal of antimony, arsenic, and cobalt as constituents of concern for sumps PW-8 and PW-8A and monitoring well A-12.

October 4, 2019: A revised GW & SWMP [9] was submitted to incorporate changes to the MH-8 monitoring program which includes semiannual sampling of PW-8 and PW-8A for the analysis of parameters listed in Table I of the Landfill's RDP. MDE approved the GW & SWMP in a letter dated February 28, 2020.

4.5.3 Nature and Extent Investigations

A summary of the NEI [7] is provided below.

April 10, 2013: MDE commented on the 2nd semiannual 2012 GSWMR regarding metal detections in compliance well B-6R and VOC detections in compliance well A-22. MDE requested the submittal of an NEI work plan.

June 6, 2013: A NEI work plan was submitted to MDE. MDE provided comments in a letter dated 07/06/2013. A revised NEI work plan was submitted on 08/22/2013 and subsequently approved by MDE in a letter dated 11/22/2013.

June 2014: GWM wells NES-1D, NES-1S, NES-4, and NES-5 were installed in the vicinity of B-6R to horizontally and vertically delineate the extent of COCs cadmium and cobalt. GWM wells NES-2D, NES-2S, and NES-3 were installed in the vicinity of compliance well A-2 to horizontally and vertically delineate the extent of the VOC COCs.

November 1, 2014: A NEI Report was submitted to MDE documenting delineation activities for the GWM wells A-2 and B-6R areas of concern. In addition, the report presented groundwater monitoring data evaluating the nature and extent of the COCs and provided recommendations for future monitoring and investigation efforts.

May 15, 2015: MDE commented on the November 2014 NEI Report and agreed with the following monitoring and investigation efforts presented in the NEI Report:

- The addition of 1,2-dichloropropane as a COC in Area A;
- The addition of down-gradient GWM wells NES-6S and NES-6D and addition of deep GWM well NES-2DD within the A-2 Area of Concern:
- The continued monitoring of GWM wells A-22, NES-1S, NES-2S, and NES-2D on a semiannual basis for applicable COCs;
- The continued monitoring of GWM wells NES-1D, NES-3, NES-4, NES-5, and SW-1 on an annual basis for applicable COCs.

November 2015: Groundwater monitoring wells NES-2DD, NES-6S, and NES-6D were installed in the vicinity of compliance well A-2 to horizontally and vertically delineate the extent of the VOC COCs.

April 12, 2016: A NEI Addendum Report was submitted to MDE documenting the additional delineation activities in the vicinity of well A-2. The study presents groundwater monitoring data evaluating the nature and extent of the COCs and provides recommendations for future monitoring and investigation efforts.

June 29, 2016: MDE commented on the April 2016 NEI Report Addendum and required the following actions:

- Installation and sampling of three (3) new GWM wells (A-22D, NES-7S, and NES-8S) to assess the extent of vinyl chloride in the vicinity of well A-22.
- Continued semiannual assessment monitoring of well A-2.
- Semiannual monitoring of wells A-22, NES-2S, NES-2D, and NES-2DD for the parameters listed in Tables I and II.
- Annual monitoring of wells NES-3, NES-6S, and NES-6D for the parameters listed in Tables I and II.

March 17, 2017: A Joint Federal/State Application for the Alteration of a Non-tidal Wetland was submitted to MDE for the installation and construction of GWM well NES-7. Approval of this application was issued by MDE via a Letter of Authorization 17-NT-0114/201760557 dated 05/15/2017.

June 21-23, 2017: Three (3) GWM wells (A-22D, NES-7S, and NES-8S) were installed within the A-2 Area of Concern. A-22D was installed to further evaluate the vertical extent of vinyl chloride in the vicinity of well A-22. GWM wells NES-7S and NES-8S were installed to further evaluate the horizontal extent of vinyl chloride and to confirm the direction of groundwater flow in the vicinity of well A-22.

September 1, 2017: The Army Corps of Engineers was notified of project completion for installation of GWM well NES-7S within the wetland with the submittal of a compliance certification form.

November 27, 2017: An NEI Report 2nd Addendum was submitted to MDE documenting additional delineation activities for the A-2 Area of Concern. In addition, this 2nd addendum presented an evaluation of the nature and extent of the COCs within the well A-2 Area of Concern and presented recommendations for future monitoring and investigation efforts.

February 2, 2018: MDE approved the November 2017 NEI Report 2nd Addendum.

May 29, 2018: A modification to the Joint Federal/State Application for the Alteration of a Non-tidal Wetland (17-NT-0114/201760557) was submitted to MDE for the installation and construction of GWM well NES-7D. Approval of this application was issued by MDE via a Modification of Authorization 17-NT-0114/201760557 effective 07/11/2018.

September 2018: One (1) GWM well (A-22DD) was installed within the well A-2 Area of Concern to further evaluate the vertical extent of VOCs in the vicinity of well A-22D. Due to concerns with the sand pack length, well A-22DD was replaced with well A22DD-A in September 2019 and well A-22DD was subsequently abandoned. Installation and abandonment activities were documented in the 3rd NEI Addendum.

November 2019: One (1) GWM well (NES-7D) was installed within the A-2 Area of Concern to further evaluate the vertical extent of VOCs in the vicinity of well NES-7S. Installation activities were documented in the 3rd NEI Addendum.

May 4, 2020: A 3rd NEI Report Addendum was submitted to MDE documenting the completion of delineation activities associated with the well A-2 Area of Concern. This addendum documented the performance of additional groundwater delineation activities, presented an evaluation of the nature and extent of the COCs within the well A-2 Area of Concern, and presented recommendations for future monitoring efforts. In addition, the 3rd NEI Addendum indicated an Assessment of Corrective Measures evaluating the remedial options for the VOC COCs for the well A-2 Area of Concern will be submitted to MDE within 90 days of MDE approval of the 3rd NEI Addendum.

May 13, 2020: The Army Corps of Engineers was notified of project completion for installation of NES-7D within the wetland with the submittal of a compliance certification form.

4.6 POTENTIAL FOR VERTICAL AND HORIZONTAL MOVEMENTS OF POLLUTANTS

Since its inception in 1968 (over 50 years ago), the Landfill has had an excellent operational record of containing pollutants onsite. To date, there are no known regulated constituents in the groundwater that are above groundwater protection standards beyond the County's property boundary. This is partly attributed to the relatively low hydraulic conductivity of the natural clayey material that underlies most of the Landfill footprint, which limits the vertical and horizontal movement of potential pollutants.

Design attributes included in Area C to control potential vertical and horizontal movement of pollutants to surface and groundwater include the following:

- It is proposed that the Area C Infill will be lined with a geosynthetic HDPE membrane and a 2 ft thick subbase with hydraulic conductivity $(K_V) \le 1 \times 10^{-7}$ cm/sec or equivalent layer combination of lower hydraulic conductivity. These barriers will be designed and installed in accordance with COMAR 26.04.07.07.C.(12)(a)(ii) (see Sections 7.1.3 and 7.1.4 for details) and 40 CFR Part 258 Subpart D. These barriers will be designed to control potential vertical movement of subsurface pollutants to surface and groundwater.
- An LCR system, constructed of porous drainage rock, and perforated HDPE pipe within
 the Area C waste limits and solid HDPE pipe outside the Area C waste limits, will be
 installed to collect and transport leachate/pollutants, outside of the Area C Infill space to
 the existing LPP (see Sections 7.3 and 7.4 for details). The LCR system will be designed
 to control potential horizontal movement of subsurface pollutants to surface and
 groundwater.
- Stormwater at the site will be channeled through benches and swales and collected in sedimentation traps and basins. The outfalls from the sedimentation traps and basins will drain to established waterways. Water quality of the stormwater management discharge ponds will be maintained by implementing Best Management Practices, available industry standards, and in accordance with the Landfill's Stormwater Pollution Prevention Plan and Erosion and Sedimentation Control Plan. Currently, the Landfill is working with the Soil Conservation District (SCD) to renew the site's 5-Year Erosion and Sedimentation Control Plan.

Up-gradient and down-gradient GWM well networks will be reviewed semiannually and adjusted as needed to monitor the effectiveness of the liner and LCR system. Laboratory analyses of the up-gradient GWM wells will be compared with the down-gradient GWM wells on a semiannual basis in accordance with the site's RDP. GWM reports will be submitted to MDE.

The sedimentation traps/ponds outfalls will be monitored in accordance with the site's RDP. Surface water monitoring reports will be submitted to MDE.

5.0 PRELIMINARY CONCEPTUAL DESIGN

A preliminary conceptual design of the Area C Infill and its conceptual subgrade and final grading plans are presented in Exhibits II-12, II-20, and II-21, respectively. Note that this is a preliminary design, so we anticipate moderate changes to the outer limits and shape of the Landfill as we

prepare detailed calculations and drawings during the Phase III report. The general concept of Area C Infill is summarized in the following:

- Occupies approximately 216.5 acres, of which approximately 165 acres will overlap onto the existing Landfill areas.
- Vertical height will extend no more than 200 ft above the existing grades outside the Landfill footprint (ground level). As the existing grades outside the Area C Infill waste footprint range between 62 and 86, the highest elevation of Area C Infill will be approximately 260 ft.
- Overall, the outer side slope grades will range up to approximately 1V:3H.
- The Area C Infill will add approximately 30 million cubic yards of airspace to the Landfill, extending the life of the Landfill by an additional 50 years.

Further details of the conceptual design as it relates to the subgrade and final grading plans, BL, and leachate collection and removal (LCR) systems are presented in the following subsections.

5.1 CONCEPTUAL SUBGRADE PLAN

Conceptual design specifications for the subgrade plan are provided below:

- There is a minimum three (3) foot separation between the bottom of the BL system and the highest groundwater table [COMAR 26.04.07.07C(12)(b)(i)].
- Install the BL system at a minimum 2% slope for positive drainage of leachate towards LCR system and prevention of leachate ponding on the BL [COMAR 26.04.07.07C(12)(a)(v)].
- The subgrade soil below the BL system shall:
 - Have adequate bearing capacity (strength) to support the anticipated static and dynamic loads [COMAR 26.04.07.07C(12)(a)(iii)].
 - Be free of large rocks, stones, sticks, roots, sharp objects, or debris and provide a smooth surface for BL system installation.

Exhibit II-20 provides the conceptual subgrade and the highest groundwater contours.

5.2 CONCEPTUAL FINAL GRADING PLAN

Conceptual design specifications for the final grading plan are provided below:

- Vertical height will extend no more than 200 ft above the existing grades outside the Landfill footprint (ground level). As the existing grades outside of the Area C Infill waste footprint range between 62 and 86, the highest elevation of Area C Infill will be approximately 260 ft.
- Side slopes of the final cover do not exceed 1V:3H. Note, however, that stormwater features (e.g., stormwater channels/benches) constructed atop the final cover slopes may have an outside slope up to 1V:2H.
- Stormwater drainage slope at top deck is about 5%.

Exhibit II-21 provides the conceptual final grading contours.

5.3 BOTTOM LINER SYSTEM

5.3.1 Soil Bearing Capacity Calculations

Soil bearing capacity calculations for the subgrade material are provided in Appendix II-D. The calculated design ratio is 23, indicating that the subgrade material below the BL system has adequate bearing strength to support the anticipated static and dynamic loads.

Sufficient subgrade material or bedding will be provided below the BL to prevent liner rupture during liner installation and operation. Proposed steps for the preparation and installation of subgrade material are summarized below:

- Reroute any existing drainage channels and divert stormwater away from working areas.
- Remove water remaining in the working area.
- Remove/clear all vegetation, organic material, top soil, and soft/loose natural soil from the working area.
- Existing onsite fill material undercut from within the Landfill footprint or other areas shall be segregated according to soil type and stockpiled in designated areas.
- All fill material used as subgrade shall be tested and approved by the inspector. All
 particle diameters greater than six (6) inches, organic material, debris, rubble, and any
 other deleterious material shall be removed prior to use.
- Approved subgrade material shall be placed in 12-in (loose thickness) lifts and compacted to a minimum of 90 percent of the maximum dry density.

5.3.2 Liner System Separation from Groundwater

Exhibit II-13 presents the basic design detail of the BL system. The system will be designed such that there is a minimum 3 ft separation between the bottom of the subbase and the composite high groundwater elevation. The overall high groundwater elevations are shown in Exhibit II-11.

5.3.3 Subgrade Settlement and Liner Elongation

Area C Infill was divided into three (3) portions for settlement analyses:

- (1) Area C Infill without overlap onto the existing Landfill (Non-Overlap)
- (2) Area C with overlap onto Area A (Area A Overlap)
- (3) Area C with overlap onto Area B (Area B Overlap)

Subgrade/existing waste settlement and BL elongation analyses were performed along three (3) sections: A-A', B-B', and C-C'. Exhibit II-14 shows the layout of these sections and Exhibits II-15 through II-17 show profiles for each of these sections. Settlement and BL elongation/contraction calculations are presented in Tables E-1 through E-3 of Appendix II-E.

Overall, the analysis indicates that the BL systems in both the Non-Overlapped and Overlapped portions will not result in significant elongation or overstressing of the BL system, nor will it

significantly alter direction of the leachate flow. Subgrade/existing waste settlement results indicate that the bottom elongation was not more than 0.25 percent, which is significantly less than the maximum allowable elongation of 12 percent for HDPE materials [8]. Further, the BL slope analyses before and after settlement (Table E-3 of Appendix II-E) indicate that leachate flow will not be significantly altered due to settlement.

Further details of these calculations are provided in the following subsections.

5.3.3.1 Subgrade Settlement and BL Elongation in Non-Overlap Area

Constructed subgrade and other compressible materials overlay the Aquia Formation - a dense sand located about 15 to 20 ft below ground. For the BL system settlement calculations, a thickness of 40 ft below ground (15 to 20 ft of subgrade material plus the remaining Aquia Formation soils) was assumed as compressible subgrade material.

Table E-1 of Appendix II-E provides subgrade settlement calculations and Table E-3 provides BL elongation calculations. As shown, the BL settlement ranged from 0.30 to 0.96 ft and the elongation and contraction of the BL was estimated to be no more than 0.01 percent and 0.38 percent, respectively.

5.3.3.2 Subgrade Settlement and BL Elongation in Area A Overlap

Table E-2 of Appendix II-E presents the primary and secondary settlement results of the existing waste in the Area A Overlap and Table E-3 provides the BL elongation calculations. As shown, the bottom settlement ranged from about 0.7 to 10.4 ft and the elongation and contraction of the BL was estimated to be no more than 3.24 percent and 1.01 percent, respectively.

5.3.3.3 Subgrade Settlement and BL Elongation in Area B Overlap

Since Area B is already lined with a similar liner, no additional liner is needed for the Area B Overlap. Moreover, since the waste depths over the Area B Overlap are less than the waste depths over the Area C Non-Overlap, by deduction, the Area B Overlap will show even less subgrade settlement and BL elongation. Thus, no additional calculations were needed for this area.

5.3.4 Bottom Liner System and Leachate Collection Layer

The BL system, including the leachate collection layer, will be similar to the Area B permit design and the Landfill's RDP. Exhibit II-13 shows the typical BL details. For the Non-Overlap and Area A Overlap, the following systems are proposed (top to bottom):

(1) Non-Overlap

- a. 24-in thick leachate collection layer with a permeability of $(K_v) \ge 0.2$ cm/sec or an equivalent layered system with an equal or greater permeability.
- b. 16-oz non-woven bedding geotextile
- c. 60-mil HDPE geomembrane liner with a permeability of $(K_v) \le 1 \times 10^{-10} \text{ cm/sec}$
- d. 24-in thick prepared subbase with a permeability of $(K_v) \le 1 \text{ x } 10^{-7} \text{ cm/sec}$; or an equivalent layered system with an equal or lower permeability

(2) Area A Overlap

a. 24-in thick leachate collection layer with a permeability of $(K_v) \ge 0.2$ cm/sec or an equivalent layered system with an equal or greater permeability.

- b. 60-mil HDPE geomembrane liner with a permeability of $(K_v) \le 1 \times 10^{-10}$ cm/sec
- c. 24-in thick prepared subbase with a permeability of $(K_v) \le 1 \times 10^{-7}$ cm/sec; or an equivalent layered system with an equal or lower permeability
- d. Remove existing topsoil and about 6-in of vegetative layer from the existing Area A cap and place new subbase over the remaining cap layers:
 - i. Existing 12-in (±) thick vegetative growth layer
 - ii. Existing 10-oz non-woven filter geotextile
 - iii. Existing Geocomposite Drainage Net
 - iv. Existing 40-mil textured geomembrane (LLDPE)
 - v. Existing 10-oz non-woven geotextile
 - vi. Existing 6-in subgrade soil
 - vii. Existing 24-in intermediate soil cover

The leachate collection layer will be designed to limit the maximum peak daily leachate head to less than 30 cm (1 ft) over the BL.

5.3.5 Geomembrane Liners

The BL systems will have an HDPE geomembrane liner and a non-woven geotextile above it for protection. The HDPE geomembrane will be textured where needed (i.e., on the side slopes) to provide a greater angle of interfacial friction within its interface layers. Stability calculations and cost analysis will guild these selections.

The selected HDPE geomembrane liner will have very low hydraulic conductivity, excellent resistance to chemical constituents found in typical sanitary leachate, adequate puncture resistance, and tensile properties. HDPE is commonly used in MSW landfill liner applications.

HDPE's relatively linear polymer structure, close-fitting polymer chains, and relatively dense semi-crystalline structure results in very low permeability and minimal potential penetration of chemicals into the polymer. Carbon black is added to the polymer to improve ultraviolet (UV) light resistance. Project requirements will limit the period of UV exposure to curtail potential degradation. Antioxidants are also added to HDPE (as appropriate) to reduce oxidation potential. Plasticizers are not added to HDPE, in contrast to other geomembrane products, and thus the migration of plasticizers is not a concern.

5.4 LEACHATE COLLECTION AND REMOVAL SYSTEM

In accordance with COMAR 26.04.07.07.C.(12)(c), the Area C Infill LCR system will be designed with the following objectives:

- (1) The system shall be constructed with materials that are chemically resistant to waste managed at the Area C Infill and the generated leachate.
- (2) The system shall have sufficient:
 - a. Flow capacity to handle anticipated leachate flows over the expected life of the Area C Infill, including the post-closure care period, and
 - b. Strength and thickness to prevent collapse under pressures exerted by overlying waste and cover materials and by any operational equipment.
- (3) The system shall be designed and operated:
 - a. To function without physical or biochemical clogging, and

b. To ensure that depth over the bottom geomembrane liner does not exceed 30 cm (1 ft).

The LCR design will be similar to the Area B permit design. Leachate generated within the Area C Infill will flow through the leachate collection layer to a series of perforated HDPE collection laterals. The leachate collection layer will be sloped 2 percent minimum towards the perforated collection laterals. The depth of the leachate collection layer and spacing between the perforated collection laterals will be designed to limit the maximum peak daily leachate head to less than 30 cm (1 ft) over the bottom geomembrane liner.

The perforated collection laterals will gravity drain to leachate headers that eventually penetrate the bottom Landfill side slopes, draining into a manhole system or sump located outside the waste footprint. The leachate collection pipes will be surrounded with a layer of inert non-calcareous coarse aggregate to provide filter protection and bedding support. The aggregate and perforations will be sized to minimize clogging of the perforations yet large enough to minimize migration of the aggregate into the leachate collection pipes. Cleanouts will be provided at the top of the side slopes to allow periodic cleaning of the leachate header pipes.

Leachate from the sumps will be pumped, transmitted, and discharged to existing tanks at the Tank Farm via HDPE forcemain(s). The storage capacity of existing sumps and tanks will be checked and upsized if needed.

Leachate collection pipe strength calculations are provided in Appendix II-F. As shown, DR-17 or thicker-walled HDPE leachate pipe for the Area C Infill is proposed to provide sufficient strength and thickness to prevent collapse due to pressures exerted by waste, cover materials, and operational equipment. Appendix II-F also provides calculations to confirm the integrity of the existing leachate collection pipes in Area B.

5.5 BOTTOM LINER SYSTEM AND LCR SYSTEM STABILITY

Veneer stability analysis was performed to verify the proposed liner system would work on the steepest bottom grades of the Area C Infill. The steepest base slopes occur in the overlay area of the Area C Infill; these slopes are at most 25 percent (1V:4H), or 14 degrees. The analysis was performed using two (2) approaches, as described in the following subsections.

5.5.1 Koerner and Soong Method

Veneer stability of various BL interfaces in the overlay area were analyzed using the Koerner and Soong (1998) method. Refer to Appendix II–G Table G-1 for the calculations. All factors of safety used in this approach were greater than the typical minimum factor of safety of 1.5. The lowest factor of safety (1.78) was obtained for the interface between the existing waste and the existing intermediate cover. Based on the calculations guided by this method, the BL and LCR system stabilities are considered satisfactory.

5.5.2 Simplified Janbu Method (PCSTABL)

Veneer stability was also analyzed using the Simplified Janbu method (PCSTABL software) to serve as a check for the Koerner and Soong method results. Refer to Appendix II-G for the calculations. The lowest factor of safety using this approach was 3.2, which is greater than the typical minimum factor

of safety of 1.5. This approach confirmed that the BL and LCR system will be stable for the Area C Infill.

5.6 LEACHATE PRETREATMENT AND DISPOSAL

Leachate collected from the Landfill is stored in two (2) existing leachate storage tanks (750,000 gallons each) located at the Tank Farm. The leachate is pumped to the existing LPP. After pretreatment, the wastewater is discharged into the WSSC sanitary sewer system and the sludge cake is disposed at the Landfill.

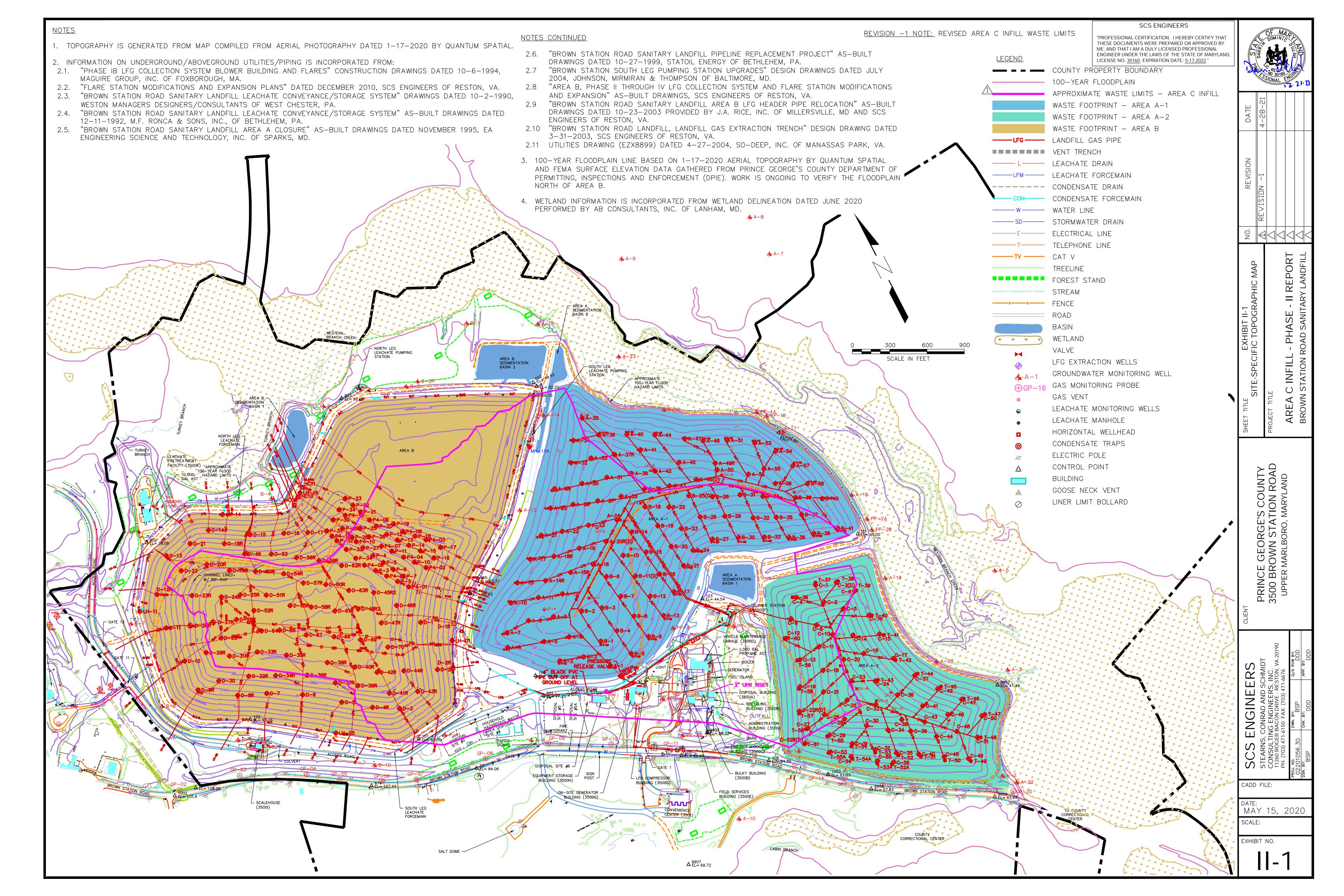
In the recent 20 years, leachate amounts have averaged about 23,000 GPD with a standard deviation of 7,000 GPD.

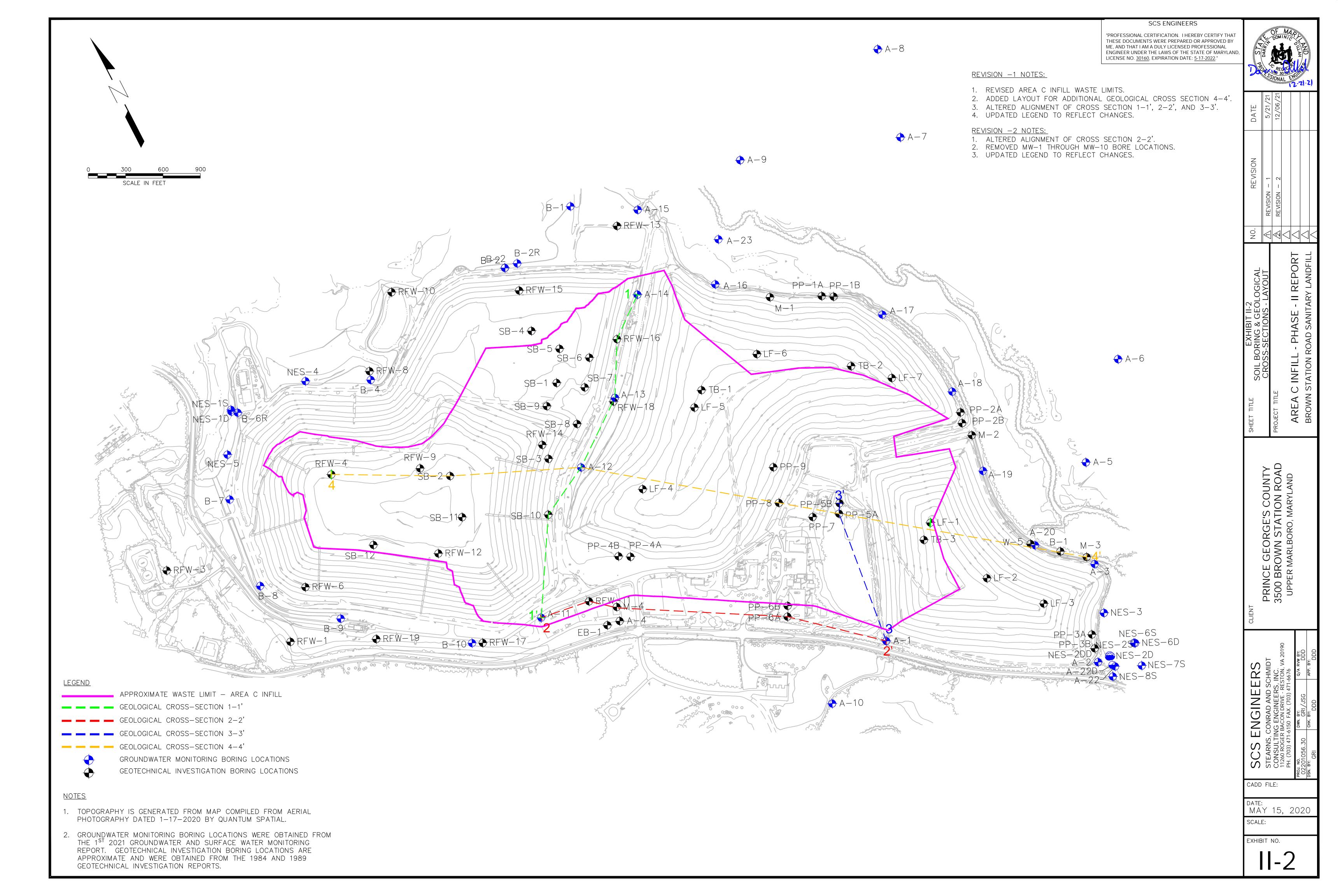
5.6.1 Leachate Pretreatment Plant

A schematic diagram of the existing LPP is provided in Exhibit II-18. The plant uses a biological process (sequencing batch reactor) to pretreat the leachate to levels suitable for discharge to WSSC. The plant consists of the following components:

- (1) Leachate treatment process comprising of a 20,000-gal equalization tank, two (2) 650-gal pH-controlled tanks (one before flocculation and one after clarification), a 1,600-gal flocculation tank, an 18-ft diameter clarifier, dual upflow anaerobic sludge baffled (UASB) reactors for anaerobic digestion, an odor control system, a 14-ft diameter thickener, a 7,000-gal holding tank to equalize flows between the thickener and sludge tank, a 7,000-gal sludge separation tank, a 50-ft³ filter press, and a filtrate sump to store filtrate:
- (2) Dual heat exchanger;
- (3) Dual sequencing batch reactors;
- (4) Fume scrubber;
- (5) A holding tank for SBR effluent; and
- (6) Two (2) boilers to generate process steam when needed.

The existing LPP was originally designed to handle an average leachate flow of 60,000 GPD[¹³]. The design capacity of the existing LPP was based on loadings of high carbonaceous BOD and acceptable levels of ammonia and TKN in the leachate. As the Landfill has aged, the leachate quality has changed to low carbonaceous BOD and relatively high ammonia and chemical oxygen demand.


An upgrade to the LPP to handle leachate from the Landfill, including the proposed Area C Infill, is presently under consideration. Review of existing leachate data indicates that the primary constituents of concern are ammonia, phosphorus, and BOD. Based on a preliminarily evaluation of the raw leachate constituents, continued biological treatment appears to be appropriate. Hydrologic Evaluation of Landfill Performance (HELP) V3.07 modelling will be performed to estimate future leachate flows, with consideration given to phased new cell construction and phased landfill capping. Upgrades to the existing LPP system will be designed to optimize the capacity and efficacy of the treatment facility to meet current and future permit limits. These upgrades are expected to be completed by December 2024.


6.0 REFERENCES

- 1. Whitman, Ezra, Requardt, G. J., and Associates. Water Supplies in New Castle County, DE; Baltimore, MD, dated 1956. [Consulting engineers' report to the Levy Court of New Castle County, DE.]
- 2. "Soils, Geology, and Groundwater for Area B, Brown Station Road Sanitary Landfill", prepared by Roy F. Weston, Inc., dated July 1978. Updated November 1979.
- 3. "Soils, Geology, Groundwater for Vertical Extension of Brown Station Road Sanitary Landfill", prepared by Bureau of Urban Services, Department of Public Works and Transportation, dated August 1980.
- 4. Hansen, H.J. and Edwards, J. The lithology and distribution of pre-Cretaceous basement rocks beneath the Maryland Coastal Plain, Maryland Geological Report of Investigations 44, dated 1986.
- 5. "Summary of the Findings of the Geotechnical Investigations of Area B, Brown Station Road Sanitary Landfill", prepared by Roy F. Weston, Inc., dated September 1989.
- 6. "Amendment to the Phase II and III Report, Brown Station Road Landfill, Area B", prepared by EA Engineering, dated February 2004.
- 7. "Nature and Extent Investigation Report Third Addendum, Brown Station Road Sanitary Landfill", prepared by SCS Engineers, dated May 4, 2020.
- 8. Geosynthetic Research Institute's (GRI) GM13 Standard Specifications, Revision 15, dated September 9, 2019.
- 9. "Groundwater and Surface Water Monitoring Plan, Brown Station Road Sanitary Landfill", prepared by SCS Engineers, dated October 4, 2019.
- 10. "1st Semiannual 2020 Groundwater and Surface Water Monitoring Report, Brown Station Road Sanitary Landfill", prepared by SCS Engineers, dated June 29, 2019.
- 11. "2nd Semiannual 2020 Groundwater and Surface Water Monitoring Report, Brown Station Road Sanitary Landfill", prepared by SCS Engineers, dated December 15, 2020.
- 12. "1st Semiannual 2021 Groundwater and Surface Water Monitoring Report, Brown Station Road Sanitary Landfill", prepared by SCS Engineers, dated June 25, 2021.
- 13. "Operation & Maintenance Manual, Brown Station Road Sanitary Landfill Leachate Pretreatment Plant", prepared by Jet Tech, dated February 6, 1995.
- 14. "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance", EPA 530/R-09-007, dated March 2009.
- 15. "Data Quality Assessment: Statistical Methods for Practitioners", EPA QA/G-9S, dated February 2008.

- 16. Rosner, Bernard, Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics, Vol. 25, No. 2, dated May 1983.
- 17. NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, dated March 1, 2021
- 18. "Phase I Report, Brown Station Road Sanitary Landfill", prepared by SCS Engineers, dated July 1, 2019.

EXHIBITS

			<u> </u>	1		
BORING NO. SB-1	BORING NO. SB-2	BORING NO. SB-3 ELE. +55.0	BORING NO. SB-4	BORING NO. SB-5	BORING NO. SB-6	BORING NO. SB-7
ELE. +50.0 ELE. +47.5 ELE. +45.0 ELE. +45.6	1/1	ELE. +50.0 1B (CL) \footnote{\fi	ELE. +44.8 \ \times \text{ELE.+45.0}	ELE. +48.5 ELE. +46.5 TA (CL) ELE. +46.5 TB (SP-SM)	ELE. +47.5 ELE. +44.5 1A (CL) V ELE. +43.0 1B (SP-SM)	ELE. +49.1 ELE. +45.1 ELE. +43.6 1B (MH) \(\frac{\tau}{ELE. +44.1}\)
ELE. +37.0	ELE. +58.0 1B (CH)	2A (SP) ELE. +38.0	ELE. +39.8 2A (SP) +39.8 3 (SP-SM) ELE. +24.8 4	2A (SM) ELE. +37.5 ELE. +35.5 + 3 (GW) ELE. +33.5 LJ	ELE. +34.5 ELE. +32.5 ELE. +32.5	2A (SP-SM) ELE: +35:1
+ + + + + + + + + + + + + + + + + + +	ELE. +54.0 2A (SP-SM) ELE. +47.0	+ 1 + 1 + 1 + 1 + 4 + 4	BORING DEPTH : 15.0'	BORING DEPTH : 15.0'	BORING DEPTH : 15.0'	BORING DEPTH : 15.0'
1 3 (SP)	+ + + + + + +	; ; ; ; ; ; ; ; ; ; ;	BORING NO. SB-8	BORING NO. SB-9	BORING NO. SB-10	BORING NO. SB-11
+	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	+ + + + + + + + + + + + + + + + + + +		ELE. +53.0 1A (CL)	ELE. +70.0 ELE. +67.0 1A (SW-SM) ELE. +65.0 1B (ML-CL)	ELE: ‡88:8 p1a (cl)
+ + + + + + + + + + + + + + + + + + +	+ 1	†	ELE. +44.0 + 3 (SP)	ELE. +46.0 2A (SP-SM) ELE. +47.5	ELE. +63.0	1B (SC) ELE. +70.5 2A (SP-SM)
ELE9.0 +1	+ 1 + 1 + 1 + 1 + 1	+ + + + + + + + + + + + + + + + + + +	BORING DEPTH: 15.0'	ELE. +38.0 [] BORING DEPTH: 15.0'	ELE. +55.0 BORING DEPTH : 15.0'	ELE. +67.0 3 (SP-SM) ELE. +65.5 3 (SW) ELE.+66.4 ELE. +65.0 BORING DEPTH: 15.0'
BORING NO. RFW-1	ELE. +7.0 +	ELE11.5 BORING DEPTH	•			
		BORING NO. RFW-3 ELE. +112.0	BORING NO. SB-12 ELE. +83.0	BORING NO. RFW-6 ELE. +86.6	BORING NO. RFW-8 ELE. +56.4	BORING NO. RFW-9 ELE. +73.0 1B (TOPSOIL) ELE. +72.7 2A (ML)
ELE. +96.0 1B (SC) ELE. +90.5	ELE14.5	1A (SM) ELE. +105.0	1A (SC) ELE. +75.0 ELE. +73.5 1B (SP-SM) ELE. +72.0 2A (SM)ELE. +74.3	ELE. +83.6	2A (SM-GM) — V ELE. +51.0 ELE. +48.4 3 (SM)	2A (SM)
2A (SM-SC)————————————————————————————————————		ELE.+95.5 2A (SM−SC)	ELE. +70.0 1 3 (SP-SM) ELE. +68.0 1	ELE. +71.6 3 (SC)	ELE. +41.5 🗓	ELE. +58.0
BORING DEPTH : 15.0'	BORING DEPTH : 86.5'	ELE. +85.0	BORING DEPTH : 15.0'	BORING DEPTH : 15.0'	BORING DEPTH : 12.5'	BORING DEPTH : 15.0'
BORING NO. RFW-2	BORING NO. RFW-4	ELE. +82.0 (SM) BORING DEPTH: 30.0'	BORING NO. RFW-10	BORING NO. RFW-11	BORING NO. RFW-12	BORING NO. RFW-13
ELE. +98.0 2A (SM-SC)	ELE. +73.5 1A (SC)		ELE. +54.7 ELE. +51.7 ELE. +49.2 ELE. +49.2 ELE. +49.2 ELE. +49.2 ELE. +49.2	ELE. +86.0 1A (TOPSOIL) ELE. +85.7 2A (SM)	ELE. +83.6 1B (SC) ELE. +78.1	ELE. +43.5 ELE. +43.3 ELE. +40.5 ELE. +38.0 1A (TOPSOIL) 1B (SM) \(\sum_{A}\)
ELE. +86.0 \(\sqrt{\frac{1}{2}} \) ELE. +86.0 \(\frac{1}{2} \) (SM-SC)	ELE. +65.5		ELE. +46.7 2A (SM) ELE. +44.7 3 (SM)	ELE. +78.0	2A (SM) V ELE. +73.1 ELE. +71.6 3 (SM-GM)	ELE. +33.5 ±
ELE. +79.5			MAX GROUNDWATER ELE. +44.0	MAX GROUNDWATER ELE. +66.2	ELE. +63.6	
BORING DEPTH : 18.5'	BORING DEPTH : 15.0'		BORING DEPTH : 10.0'	BORING DEPTH : 15.0'	BORING DEPTH : 20.0'	BORING DEPTH : 10.0'

"PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

ND, OF MANIMUM OF MAN

A B	GRANULAR FILL COHESIVE FILL	DATE	5/21/21	12/06/21		
2A	GRANULAR NATURAL SOIL					
3	+ + + + + + + GRANULAR SOIL (16 <n<32)< td=""><td>Z</td><td></td><td></td><td></td><td></td></n<32)<>	Z				
1	GRANULAR SOIL (32 <n)< td=""><td>REVISION</td><td>_</td><td>2</td><td></td><td></td></n)<>	REVISION	_	2		
	SOIL TYPE NOT IDENTIFIED	RE	- NC	I NO		
	(CL) ASTM SOIL CLASSIFICATION		REVISION	REVISI(
_	MAXIMUM GROUNDWATER ELEVATION		X	꼰		
			ا ا	ادا	اد	ا۔

<u>REVISION -1 NOTES:</u>

LEGEND

1B

- REVISED NOMENCLATURE AND ADDED SOIL CLASSIFICATION INFORMATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.

REVISION -2 NOTES:

- REVISED GROUNDWATER ELEVATION ON BORING LOGS TO REFLECT MAXIMUM GROUNDWATER ELEVATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.

REVIS	REVISION - 1	REVISION - 2					
O N	\triangleleft		\triangleleft	\langle	\triangleleft	<	
EXHIBIT II-2A WELL LOG SUMMARY				AREA C INFILL - PHASE - II REPORT	BPOWN STATION POAD SANITABY I ANDEILI	SIATION WOAD SANITAMI LANDITEE	
SHEET TITLE		PROJECT TITLE		AREA (NWOGA	DIVOVIN	
PRINCE GEORGE'S COUNTY 3500 BROWN STATION ROAD UPPER MARLBORO, MARYLAND							
ERS	SCHMIDT	INC.	ESTON, VA 20190 71-6676	Q/A RVW BY:		DDD DDD	
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC.	11260 KOGEK BACON DKIVE - KESTON, VA 20190 PH. (703) 471-6150 FAX. (703) 471-6676	DWN. BY:	GRI/JSG	DDD CTR. BT.	
SCS I	STEARNS,	CONSULTI	11260 KOGEI PH. (703) 471	SOJ. NO.	02201056.30	SN. BI. GRI	

DATE: MAY 15, 2020

scale: NO SCALE

BORING NO. RFW-15	BORING NO. RFW-14	BORING NO. RFW-17	BORING NO. RFW-18	BORING NO. RFW-19	BORING NO. B-1	BORING NO. B-2
ELE. +50.0 1A (TOPSOIL) ELE. +49.7 2A (SM) V ELE. +44.0 ELE. +40.0	ELE. +54.3 Z ELE. +50.4 2A (SM-GM) ELE. +46.3 ELE. +44.3 + 3 (SM)	ELE. +86.5 ELE. +83.5 1A (SM-GM) ELE. +82.9 2A (SM) ELE. +74.5 + + + + + + + + + + + + + + + + + +	ELE: +48:0 ELE: +47:9 ELE: +45:0 ELE: +42.5 ELE: +42.5 ELE: +38.0 ELE: +38.0 1A (TOPSOIL) 1B (SP) 2A (SC) ELE: +43.4 ELE: +38.0	ELE. +88.0 ELE. +87.9 ELE. +85.0 ELE. +82.5 ELE. +82.5 2A (GM-SM) ELE. +84 + 3 (SM) ELE. +66.0	ELE. +43.1 1A (SM-SC) ELE. +41.1	ELE. +45.4 1A (SC) ELE. +38.4 2A (SM-SC) ELE. +30.4 ELE. +28.4 3 (SM-SC)
BORING DEPTH : 10.0'	BORING DEPTH : 10.0'	ELE. +61.5 BORING DEPTH : 25.0'	BORING DEPTH : 10.0'	BORING DEPTH : 20.0'	BORING DEPTH : 18.0'	MAX GROUNDWATER ELE. +45.71 BORING DEPTH: 17.0'
BORING NO. B—2R	BORING NO. B-4	BORING NO. B-6R	BORING NO. B-7	BORING NO. B—8	BORING NO. B-9	BORING NO. B-10
ELE. +47.6 V ELE.+43.27 2A (SM) ELE. +39.6 + + + + + + + + + + + + + + + + + +	ELE. +55.4 ELE. +52.9 ELE. +50.4 ELE. +50.4 ELE. +50.4 1A (SM-GP) ELE. +51.88 1B (SM-GP) 2A (SM-GP) ELE. +43.4 ELE. +40.4	2A (SP) ELE. +59.4	1B (SC-SM) ELE. +74.2	ELE. +86.8 1B (CL) VELE.+83.59 ELE. +79.3 2A (SP) ELE. +74.3 +3 (SP)	ELE. +84.9 VELE.+83.29 1A (SC-SM) ELE. +77.9 2A (SC-SM) ELE. +70.4 +3 (SC-SM)	ELE. +90.5 ELE. +85.5 ELE. +83.5 ELE. +84.11 2A (SM-SC) ELE. +76.0 + 3 (SM-SC)
BORING DEPTH: 20.0'	BORING DEPTH : 15.0'	ELE. +52.4 \pm BORING DEPTH : 23.0'	ELE. +63.2 1 (30 6) (50	ELE. +68.3 Lt BORING DEPTH : 18.0'	ELE. +66.9 L ` ` ´ BORING DEPTH: 18.0'	ELE. +72.5 13 (SP)
BORING NO. NES-1D	BORING NO. NES-1S	BORING NO. NES-2DD	BORING NO. NES-6D	BORING NO. NES-3	BORING NO. NES-4	BORING NO. NES-5
ELE. +71.5 1A (MH) ELE. +63.5 2A (SC) ELE. +56.5 + + + + + + + + + + + + + + + + + +	ELE. +70.2 1A (MH) ELE. +63.2 2A (SC) ELE. +58.2 +	ELE. +33.0 ELE. +28.0 ELE. +31.84 1A (SC) 2B (SC) ELE. +33.0 + + + + + + + + + + + + + + + + + +	ELE. +29.7 ELE. +27.2 2A (SC) ELE. +19.7 + + + + + + + + + + + + +	ELE. +31.7 ELE. +28.7 ELE. +28.7 BORING DEPTH : 14.0'	ELE. +61.0 2A (SC) ELE. +51.0 VELE.+50.74 3 (SC) BORING DEPTH: 20.0'	ELE. +78.4 2A (SC) ELE. +66.4 3 (SC) ELE. +54.4 BORING DEPTH: 24.0'
ELE. +35.5 BORING DEPTH: 36.0'	BORING NO. NES-2S ELE. +31.7 C ELE. +29.7 1A (SC) ELE. +15.2 ELE. +15.2	+ + + + + + + + + + + + + + + + + + +	ELE12.3 LJ BORING DEPTH: 42.0'	BORING NO. NES-6S ELE. +30.3	BORING NO. PP-1A ELE. +39.7 1A ELE. +33.22 ELE. +24.7	BORING NO. PP-2A ELE. +37.9 ELE. +34.9 1A (SC-GP) ▼ ELE.+31.27 2A (SC-GP) ELE. +19.9
	BORING DEPTH : 20.0'	ELE31.0 + BORING DEPTH : 64.0'		ELE. +7.3 + BORING DEPTH : 23.0'	BORING DEPTH : 27.0'	3 (SC) BORING DEPTH: 27.0'

"PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

SCS ENGINEERS

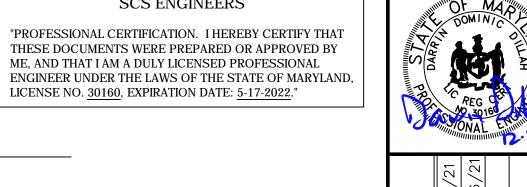
LE	GEND	
1A		GRANULAR FILL
1B		COHESIVE FILL
2A		GRANULAR NATURAL SOIL
2B		COHESIVE NATURAL SOIL
3	+ + + + + + + + +	GRANULAR SOIL (16 <n<32)< td=""></n<32)<>
	 	SOIL TYPE NOT IDENTIFIED
	(CL)	ASTM SOIL CLASSIFICATION
	∇	MAXIMUM GROUNDWATER ELEVATION

REVISION -1 NOTES:

- 1. REVISED NOMENCLATURE AND ADDED SOIL CLASSIFICATION INFORMATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.

REVISION -2 NOTES:

- 1. REVISED GROUNDWATER ELEVATION ON BORING LOGS TO REFLECT MAXIMUM GROUNDWATER ELEVATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.


REVISION	REVISION - 1	REVISION - 2					
NO.					<	1	<
EXHIBIT II-2B WELL LOG SUMMARY		TLE		AREA C INFILL - PHASE - II REPORT		SKOW Z S A LOZ KOAD SAZI AKY LAZDFILL	
SHEET TITLE		PROJECT TITLE		ARE,	ָ בַּנֻ	ななこと	
PRINCE GEORGE'S COUNTY 3500 BROWN STATION ROAD UPPER MARLBORO, MARYLAND							
EERS	ND SCHMIDT	ERS, INC.	11260 KOGEK BACON DKIVE - KESTON, VA 20190 PH. (703) 471-6150 FAX. (703) 471-6676	Q/A RVW BY:		APP. BY:	DDD
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC.	11260 KOGEK BACON DKIVE - KESTON, PH. (703) 471-6150 FAX. (703) 471-6676	DWN. BY:	Ī	CHK. BY:	QQQ
SCS I		CONSULTI	11260 KUGE PH. (703) 471	PROJ. NO.	02201056.30	DSN. BY:	GRI
CADD	ΓIL	<u>-</u>					

DATE: MAY 15, 2020 scale: NO SCALE

BORING NO. PP-1B BORING NO. PP-2B BORING NO. PP-3A BORING NO. PP-5B BORING NO. PP-3B BORING NO. PP-4A BORING NO. PP-5A ELE. +34.9 1A (SC-GC) ELE. +32.9 \bigcirc ELE. +31.7ELE. +35.4 1A (SC) ELE. +33.4 \sqrt{\sqrt{\sqrt{ELE.}}} \sqrt{\sqrt{ELE.}} \text{ELE.} +32.8 ELE. +41.5 77 1A (SC-GW) ELE. +38.0 ELE. +41.5 ELE. +39.6ELE. +65.7_____ ELE.+39.37 ______ ELE.+,39.1 1A (SC-GP) ELE. +35.0 1A (SC-GW) ELE. +61.7 ELE. +36.5 ELE. +36.5 $1A \nabla$ ELE.+33.12 ______ ELE.+31.44 2A (SC) 2A (SC-GC) ∇ ELE.+57.7 2A (SC) ELE. +24.9 ELE. +25.4 ELE. +31.5 2A (SC-GP) ELE. +53.7 🗵 ELE. +29.5 ELE. +24.6 🛂 3 (SC) ELE. +20.0 _ ELE. $+23.5 \downarrow$ ELE. +20.5 1 3 (SP) BORING DEPTH: 12.0' BORING DEPTH 3 (SC-GC) ELE. +11.0 📗 28.0' ELE. +13.5 🖫 4 (SC) ELE. +6.6 🗄 4 (SC) BORING NO. PP-8 BORING NO. PP-4B ELE. 0.0 🖺 ELE. +65.9 ELE. +2.5 匠 ELE. -5.1 ELE. -4.6ELE. +61.9 1 ELE. +46.8 1A (GM) ELE. -12.1 L ELE. +53.9 🛭 ELE. +42.3 3 (SC) ELE. +45.9 L ELE. −23.6 🗓 MAX GROUNDWATER ELE. +51.19 BORING DEPTH: 38.0' BORING DEPTH: 59.0' BORING DEPTH: 33.0' BORING DEPTH: 47.0' BORING DEPTH: 20.0' BORING DEPTH: 7.5' BORING DEPTH: 39.0' BORING NO. PP-6B BORING NO. A-2BORING NO. A-3BORING NO. A-6 BORING NO. PP-6A BORING NO. A-1 BORING NO. A-4 ELE. +80.3 ELE. +31.7 | \frac{1}{1} \text{ELE.+29.8} ELE. +38.8 ELE. +60.4 ELE. +71.2 ELE. +71.2 ELE. +75.5 ✓ ELE.+35.15 1A (SC) 1A (SC) ELE. +33.8 ELE. +26.7 ELE. +75.3 1A (SC) ELE. +69.0 🗒 2A (SC-GC) ELE. +63.2 1A (GP-SP) ELE. +71.3 ELE. +28.8 ELE. +61.2 ELE. +64.0 2A (SP) ______ ELE.+48.1 ELE. +67.3 2A (SC-SM) ELE. +59.0 | 3 (SC) ELE. +45.4 2B (SC) 2A (SC-SM) _____ ELE.+53.69 <u></u> ELE.+57.3 ELE. +13.7 _____ ELE.+61.75 ⋅ _____ ELE.+52.29 2A (SP) ELE. +18.8 ELE. +38.4 3 (SC) ELE: +48:2 2B (CL) ELE. +13.8 H BORING DEPTH 關4 (SC) 2B (SC) 3 (SC) 3 (SC) ELE. +43.2 🖠 ELE. +30.4 ELE. +50.3 $\frac{1}{4}$; d (SP) BORING NO. A-5 ELE. +36.2 ELE. +40.5 🎚 3 (SP) ELE: +33.6 1A (MH) V ELE.+31.4 ELE. −8.3 🗹 []4 (SC) ELE. +18.4 💾 2A (MH) ELE. +30.3 ELE. +20.1 ELE. $+18.1 \pm 3$ (SC-MH) 闘4 (SM) ELE. +13.1 🖺 BORING DEPTH: 35.0' BORING DEPTH: 42.0' BORING DEPTH : 28.0' BORING DEPTH: 20.5' BORING DEPTH: 40.0' BORING DEPTH: 50.0' BORING DEPTH: 35.0'

SCS ENGINEERS

ME, AND THAT I AM A DULY LICENSED PROFESSIONAL LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

1A	GRANULAR FILL
2A	GRANULAR NATURAL SOIL
2B	COHESIVE NATURAL SOIL
3	++++ ++++ GRANULAR SOIL (16 <n<32)< td=""></n<32)<>
4	GRANULAR SOIL (32 <n)< td=""></n)<>
	SOIL TYPE NOT IDENTIFIED
	(CL) ASTM SOIL CLASSIFICATION
	MAXIMUM GROUNDWATER ELEVATION

REVISION -1 NOTES:

LEGEND

- 1. REVISED NOMENCLATURE AND ADDED SOIL CLASSIFICATION INFORMATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.

REVISION -2 NOTES:

- 1. REVISED GROUNDWATER ELEVATION ON BORING LOGS TO REFLECT MAXIMUM GROUNDWATER ELEVATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.

DATE	5/21/21	12/06/21					
REVISION	REVISION - 1	REVISION - 2					
N	\ll	\triangleleft	\triangleleft	\langle	\triangleleft		
EXHIBIT II-2C WELL LOG SUMMARY) TLE		AREA C INFILL - PHASE - II REPORT	BEOWN STATION BOAD SANITARY I ANDEILL		
SHEET TITLE		PROJECT TITLE		ARE,	RPOW		
CLIENT	PRINCE GEORGE'S COUNTY 3500 BROWN STATION ROAD UPPER MARLBORO, MARYLAND						
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC.	11200 ROGER BACOIN DRIVE - RESTOIN, VA 20190 PH. (703) 471-6150 FAX. (703) 471-6676	PROJ. NO. DWN. BY: Q/A RVW BY:	1/JSG	GRI TI DDD	
CADD	FIL	E:		10			
date: MA	Υ	15	, .	20	20)	

NO SCALE

EXHIBIT NO.

BORING NO. A-7	BORING NO. A-8	BORING NO. A-9	BORING NO. A-10	BORING NO. A-11	BORING NO. A-22D
ELE. +90.0	ELE. +99.5	ELE. +89.8 1A (MH)	ELE. +54.7	ELE. +84.4 1A (SC) ELE. +80.4	ELE. +35.8 2A (SC) \sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
ELE. +84.0	ELE. +95.0 1B (CL)	ELE. +85.3 1B (MH)	ELE. +46.7	1B (SC) ELE. +76.4 \times \text{ELE.} +75.63	[//
1B (MH) ELE. +79.0	ELE. +90.5	ELE. +80.3 2A (CL)	ELE. +42.7 (SC)		+ + +
ELE. +74.0 (MH)		ELE. +75.3	+ + 3 (SC)	2A (SC)	
1 + 1 + 1	✓ ELE.+77.0		ELE. +34.7	ELE. +65.4 + +	+ + + +
$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \end{array} & \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} & \begin{array}{c} & & & \\ & & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ $	2A (SC)	; 3 (SC) ; 1		† 3 (SP) †	+ 3 (SC) + +
+] +] +]		ELE. +60.3	4 (SC)	+ + + +	+ + + + + + + + + + + + + + + + + + + +
ELE. +54.0 +	ELE. +64.0		ELE. +18.7	3 (SC-SM)	+ + +
				ELE. +46.4 +	ELE4.8
## 4 (CL)	3 (SC)	□ V ELE.+45.3	BORING DEPTH : 36.0'	BORING DEPTH : 38.0'	
	ELE. +48.5				BORING DEPTH : 40.0'
ELE. +35.5					
		4 (SC-SM)			
	4 (SC-SM)				
		ELE. +19.8 <u>国</u>	BORING NO. A-14	BORING NO. A-15	BORING NO. A-22
		BORING DEPTH : 70.0'	ELE. +45.0 ELE. +43.0 1A (SM) ELE. +41.0 1B (CL) V ELE.+39.65	ELE. +43.0 1A (SM) ELE. +39.0 ELE.+39.17	ELE. +32.7 2A (SC) \(\sigma\) ELE.+30
(SC-SM)	ELE. +19.0 国			1B (MH)	ELE. +27.7
	BORING DEPTH : 80.5'		2A (SM)	ELE. +33.0	ELE. +19.7 +
	BOTAITO BET III . GO.G		ELE. +31.5	2A (SC)	
			4 (SM)	ELE. +25.0 + +	ELE. +12.7 LJ
ELE10.0			ELE. +20.0 BORING DEPTH : 25.0'	3 (SC)	
DODINO DEDTU : 400 0'			20.0	ELE. +15.0 🖰	BORING DEPTH : 20.0'
BORING DEPTH : 100.0'	BORING NO. A-12	BORING NO. A-13	BORING NO. A-23	BORING DEPTH : 28.0'	
	ELE. +53.5 1A (SM-SC)	ELE. +47.0	ELE. +37.3 2A (MH) FLE. +33.3 ELE.+33.92		
	ELE: +46:5 1B (CL)	1B (SC)	ELE. +33.3 L V ELE.+33.92		
	2A (SM)	ELE. +38.0 2A (SC)	+ - 3 (MH)		
	ELE. +39.5	ELE. +33.0	ELE. +22.3 +		
	+ + 3 (SM-SC) +	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	ELE. +29.5 [] BORING DEPTH : 24.0'	ELE. +24.0 1 BORING DEPTH : 23.0'	BORING DEPTH : 15.0'		

"PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

1A	GRANULAR	FILL
1B	COHESIVE F	TILL
2A	GRANULAR	NATURAL SOIL
3	GRANULAR	SOIL (16 <n<32)< td=""></n<32)<>
4	GRANULAR	SOIL (32 <n)< td=""></n)<>
	SOIL TYPE	NOT IDENTIFIED
	(CL) ASTM SOIL	CLASSIFICATION
	MAXIMUM G	ROUNDWATER ELEVATION

<u>REVISION -1 NOTES:</u>

LEGEND

- REVISED NOMENCLATURE AND ADDED SOIL CLASSIFICATION INFORMATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.
- 4. MOVED BORING M-1 TO EXHIBIT II-2E.

REVISION -2 NOTES:

- REVISED GROUNDWATER ELEVATION ON BORING LOGS TO REFLECT MAXIMUM GROUNDWATER ELEVATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.

NO. REVISION	A REVISION - 1	A REVISION - 2				
WEIL LOG SUMMARY		PROJECT TITLE	7	\parallel AREA C INFILL - PHASE - II REPORT \parallel_2	BEOWN STATION BOAD SANITABY I ANDEILL	PICONIN SIGNION ROAD SHINING THE THIRD SHINING THE SHINING THE THIRD SHINING THE THE THIRD SHINING THE THIRD SHINING THE
	PRINCE GEORGE'S COUNTY	3500 BROWN STATION ROAD	TIPPER MARI BORO MARVI AND			
ENGINEERS	S. CONRAD AND SCHMIDT	TING ENGINEERS, INC.	zek bacon drive - keston, va 20190 171-6150 FAX. (703) 471-6676	DWN. BY: Q/A RVW BY:	O GRI/JSG DDD	DDD

CADD FILE:

DATE: MAY 15, 2020

scale: NO SCALE

BORING NO. M-1	BORING NO. M-2	BORING NO. M-3	BORING NO. M-4
ELE. +40.8	ELE. +35.9	ELE. +33.2	ELE. +79.6
1A (SC) ELE. +35.8 \square \textsquare \text{ELE.} +35.2	✓ ELE. +31.6 1A (GW-SC)	ELE. +28.2 1A (SP)	
1 P/2		ELE. +23.2	
2A (SC) ELE. +30.8	ELE. +25.9	ELE. +23.2 (SC)	
<u>†</u>]	1B (SC)	ELE. +20.2 2A (SC)	
†] †]	ELE. +18.9	2B (SC)	∇ ELE.+62.8
+]3 (SC-GC)	2A (SC)	ELE. +13.2	2A (SC)
	ELE. +10.9	+ + +	
ELE. +15.8	2B (SC)	+ + +	
	ELE. +5.9	+ + +	
4 (SC)	+ + -	+ + + 3 (SC-SM)	
	+ 3 (SC)	+ 3 (3C 3N)	ELE. +41.6 2B (SC)
	+ + +	+ +	2B (SC)
	+ +	+ + +	2B (SC-SM)
	+ + 3 (SP)	+ + +	
ELE9.2	+	ELE16.8	ELE. +29.6
	+		+ +
	+	晶4(SC-SM)	+
	+		+ + -
	3 (SC) +	ELE31.8	+
			J (3U-3M) + +
			+ +
	ELE39.1 +		+ + -
			+ + +
			ELE. +0.4
5 (MH)	4 (SC-SM)		
		5 (SC-SM)	
	ELE64.1		4 (SC-SM)
	5 (SC-SM)		
ELE77.2 #	ELE84.1		ELE40.4
6 (SM-SC)			
	6 (SC-SM)		
ELE89.2		ELE96.8 <u> </u>	
	ELE99.1 Z		5 (SC-SM)
BORING DEPTH : 130.0'	BORING DEPTH : 135.0'		
DUNING DEFIH: ISU.U	DUKING DEPIH : 135.U		
		a (SC-SW)	
		H	二
			ELE71.4 BORING DEPTH

"PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

LE(GEND
1A	GRANULAR FILL
1B	COHESIVE FILL

GRANULAR NATURAL SOIL 2A

1 A

1B

COHESIVE NATURAL SOIL $3 \left[+ \frac{1}{4} + \frac{1}{4} \right]$ GRANULAR SOIL (16<N<32)

GRANULAR SOIL (32<N)

GRANULAR NATURAL SOIL (N<100)

COHESIVE NATURAL SOIL (N<120) (CL) ASTM SOIL CLASSIFICATION

______ MAXIMUM GROUNDWATER ELEVATION

<u> REVISION -1 NOTES:</u>

- 1. REVISED NOMENCLATURE AND ADDED SOIL
- CLASSIFICATION INFORMATION.
 2. UPDATED LEGEND TO REFLECT CHANGES.

REVISION -2 NOTES:

- 1. REVISED GROUNDWATER ELEVATION ON BORING LOGS TO REFLECT MAXIMUM GROUNDWATER ELEVATION.
- 2. UPDATED LEGEND TO REFLECT CHANGES.

	PRINCE GEORGE'S COUNTY	3500 BROWN STATION ROAD	UPPER MARLBORO, MARYLAND	
E Z J	PR	350	[]	

SCS E	SCS ENGINEERS	KS.	i i i
STEARNS, C	STEARNS, CONRAD AND SCHMIDT	HMIDT	
CONSULTIN	CONSULTING ENGINEERS, INC.	NC.	
11260 ROGER I	11260 ROGER BACON DRIVE - RESTON, VA 20190	TON, VA 20190	
PH. (703) 471-6	PH. (703) 471-6150 FAX. (703) 471-6676	6676	
NO.	DWN. BY:	Q/A RVW BY:	
201056.30	GRI/JSG	QQQ	
BY:	CHK. BY:	APP. BY:	
GRI	DDD	ODO	

CADD FILE:

DATE: MAY 15, 2020 scale: NO SCALE

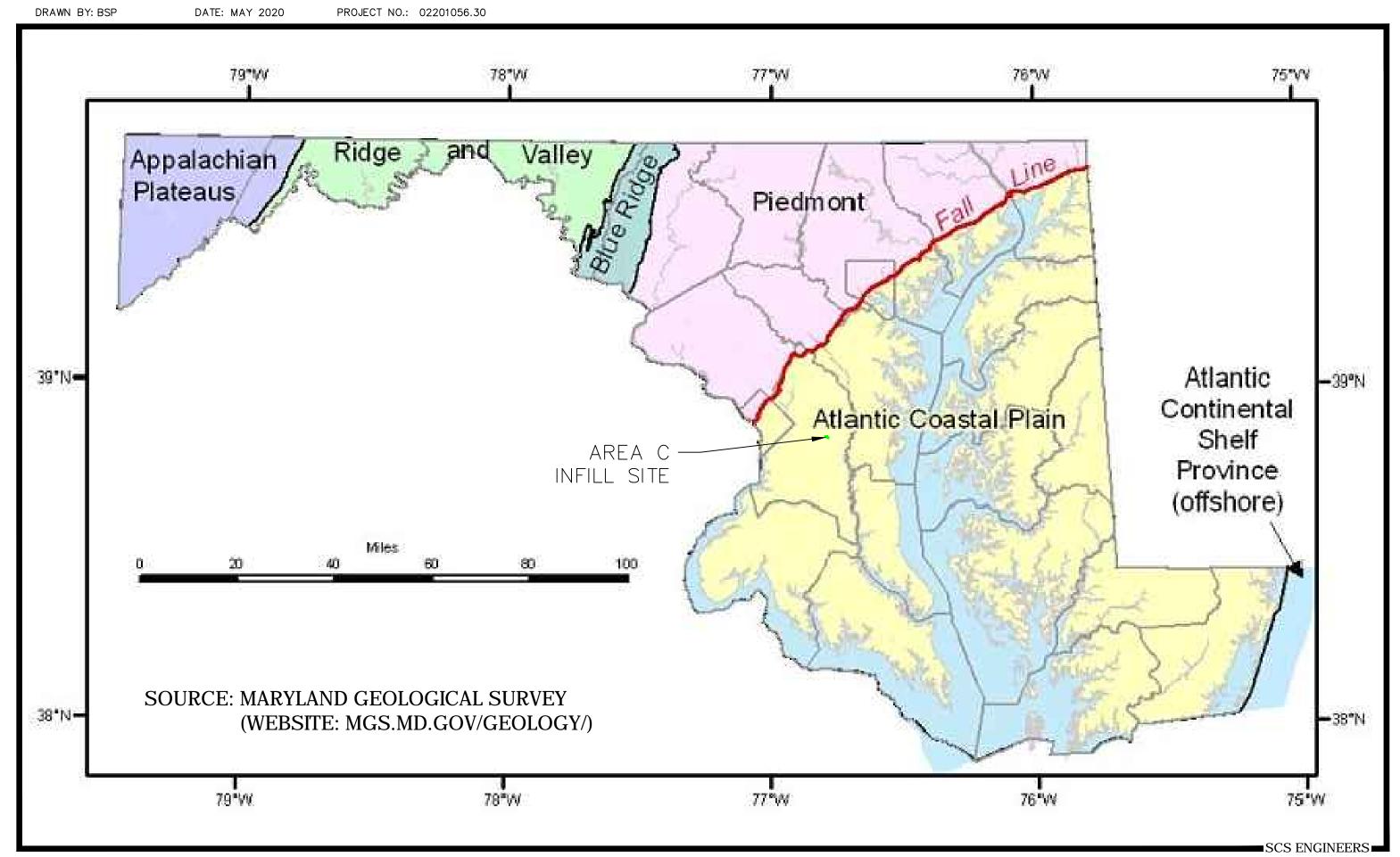
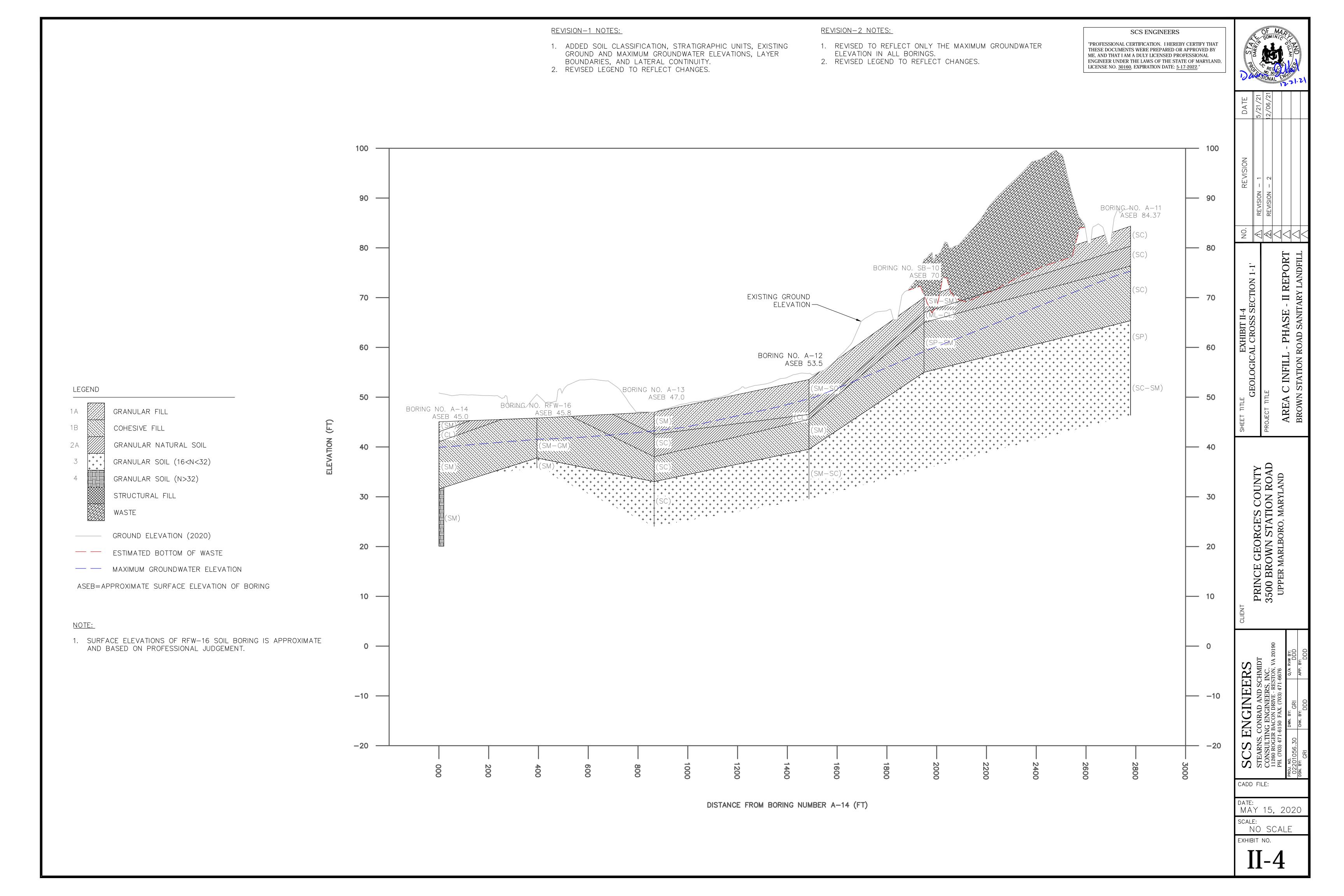



EXHIBIT II-3. MARYLAND PHYSIOGRAPHIC PROVINCES AND APPROXIMATE SITE LOCATION

<u>REVISION-1 NOTES:</u>

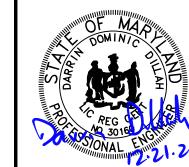
1. ADDED SOIL CLASSIFICATION, STRATIGRAPHIC UNITS, EXISTING

2. REVISED LEGEND TO REFLECT CHANGES.

GROUND AND MAXIMUM GROUNDWATER ELEVATIONS, LAYER BOUNDARIES, AND LATERAL CONTINUITY.

REVISION-2 NOTES:

1. REVISED TO REFLECT ONLY THE MAXIMUM GROUNDWATER


ELEVATION IN ALL BORINGS.

2. REPLACED BORING MW-1 WITH BORING M-4.

3. REVISED LEGEND TO REFLECT CHANGES.

SCS ENGINEERS

"PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL

DATE: MAY 15, 2020

NO SCALE

II-5

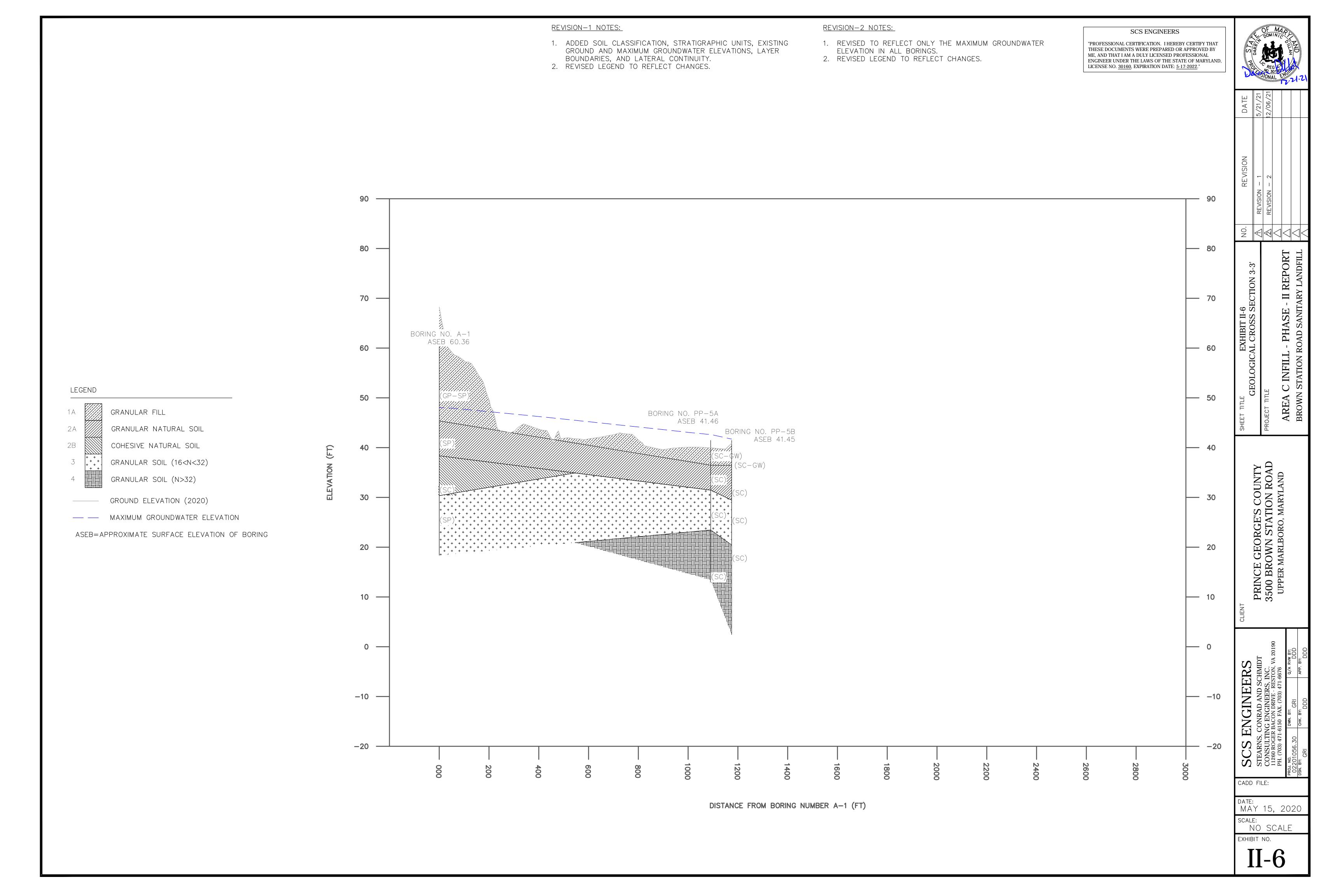
ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

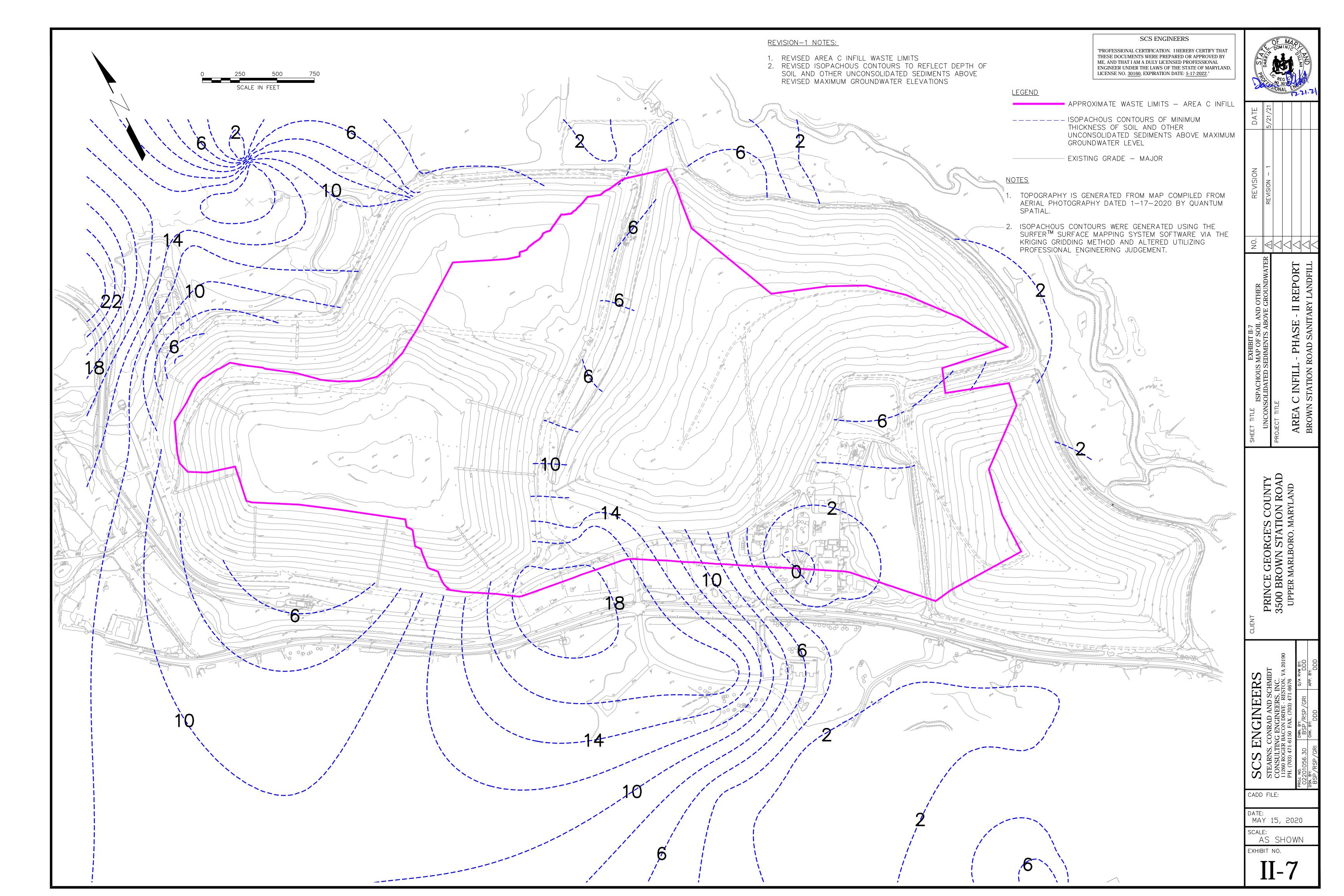
1	00 —		100
!	90 —	BORING NO. RFW-11 BORING NO. A-11 ASEB 86.0	— 90
,	80 —	ASEB 84.37 BORING NO. M-4 (SC) (SC) (SC)	— 80
	70 —	BORING NO. PP-6A ASEB 71.19 (SC) (SC)	
(60 —	(SP)	60
(FT)	50 —	- (SC-SM)************************************	— 50
EVAT	40 —	(SP)	— 40
급	30 —	SC)	30
	20 —	**************************************	20
	10 —	+ + + + + + + + + + + + + + + + + + +	— 10
	0 —		— o
-	·10 —		
-:	20 —	SC-SM)	— -20
-,	30 —		-20
_	40 —		— -20
-	50 —	- (SC-SM)	-20
	60 —		-20
	70 —		— -20
-	80 —		-20 3000

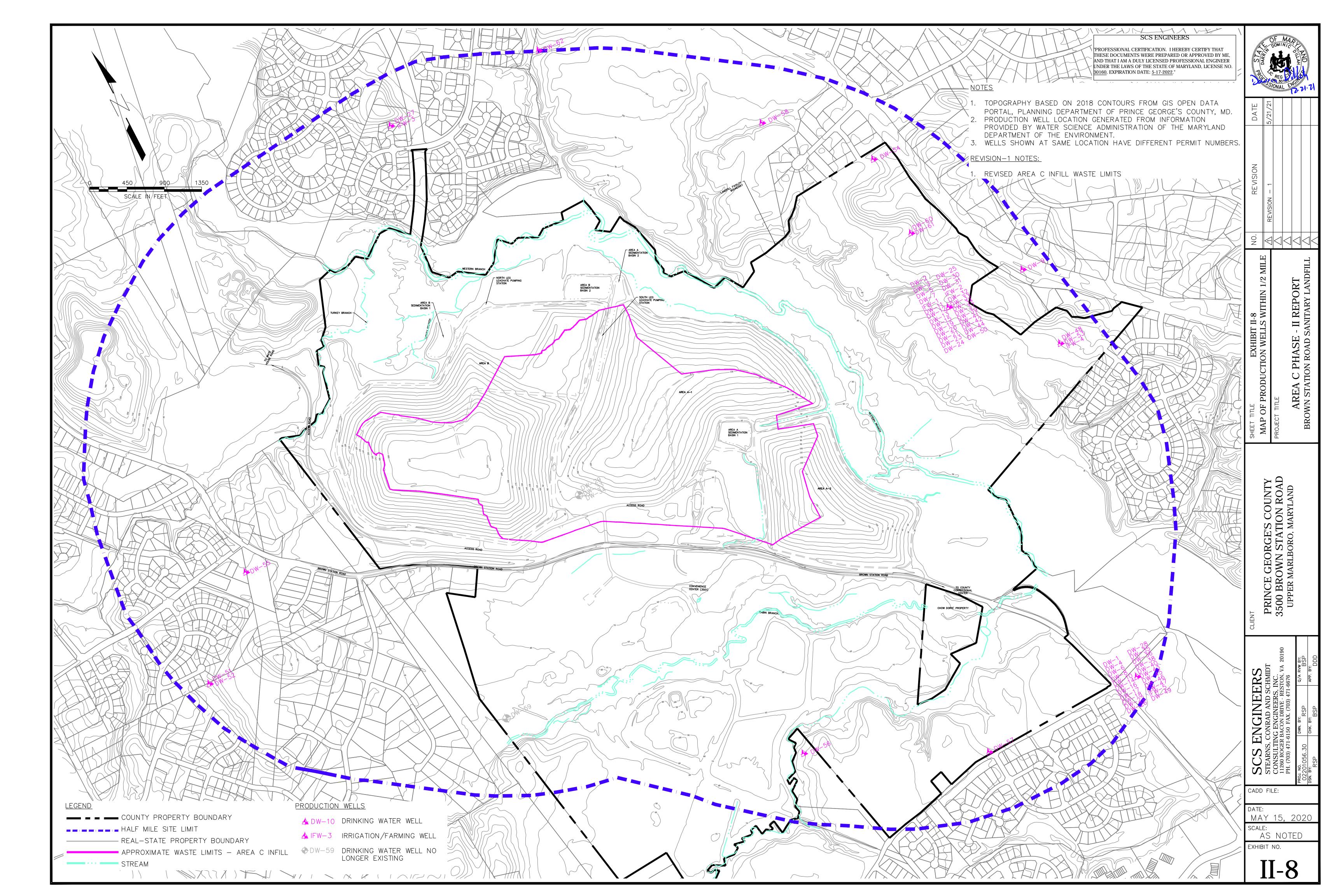
DISTANCE FROM BORING NUMBER A-11 (FT)

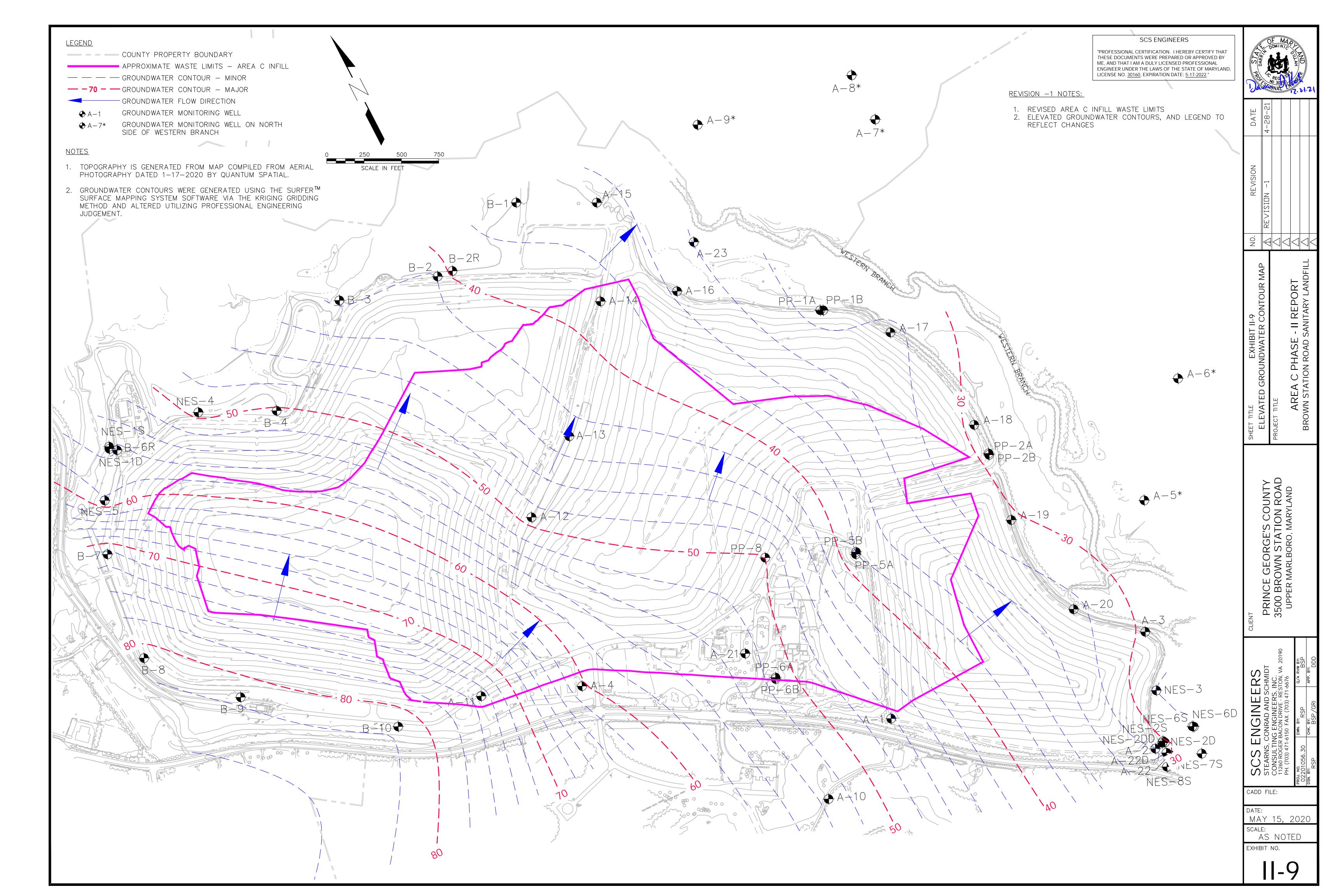
LEGEND

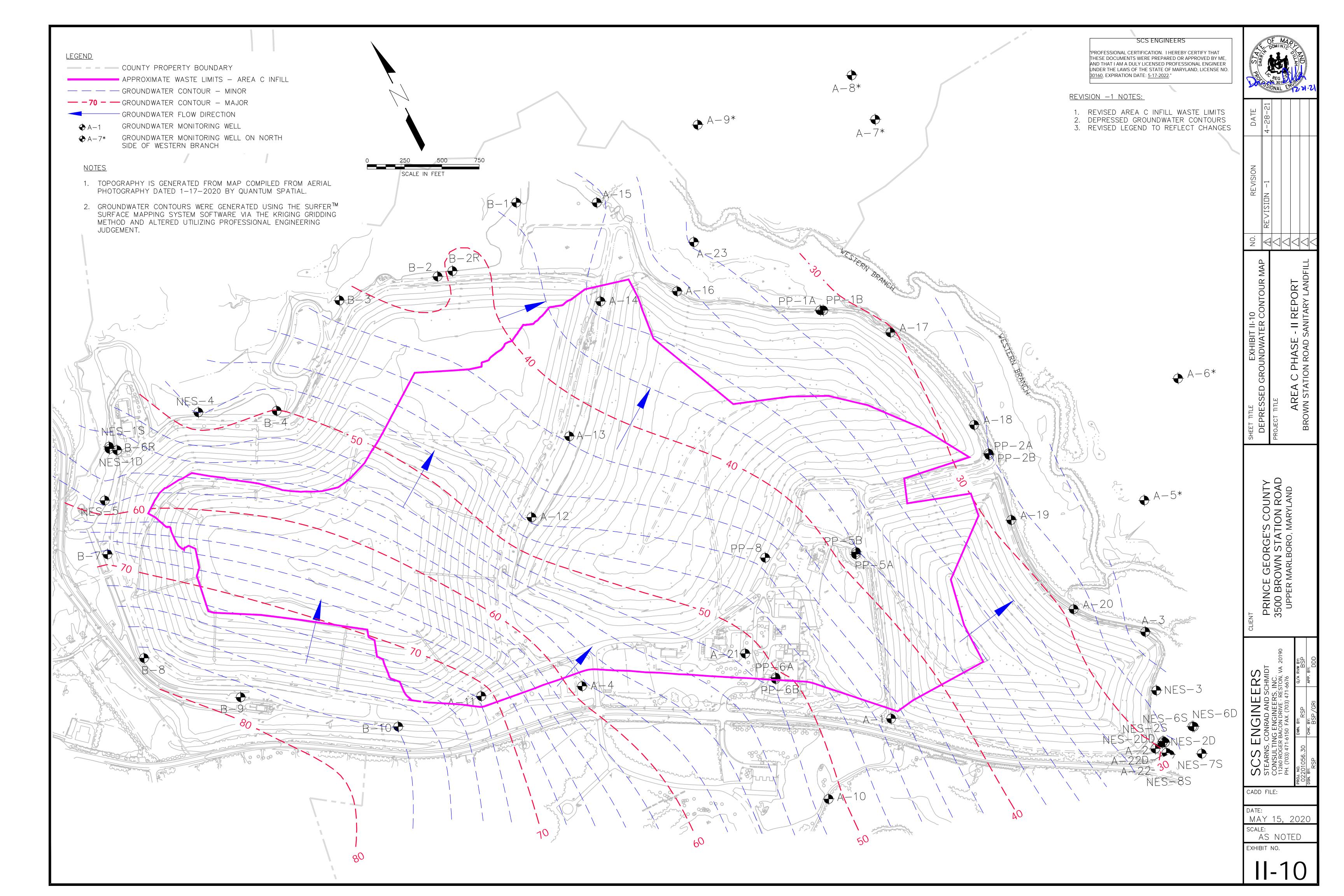
1A GRANULAR FILL COHESIVE FILL GRANULAR NATURAL SOIL COHESIVE NATURAL SOIL

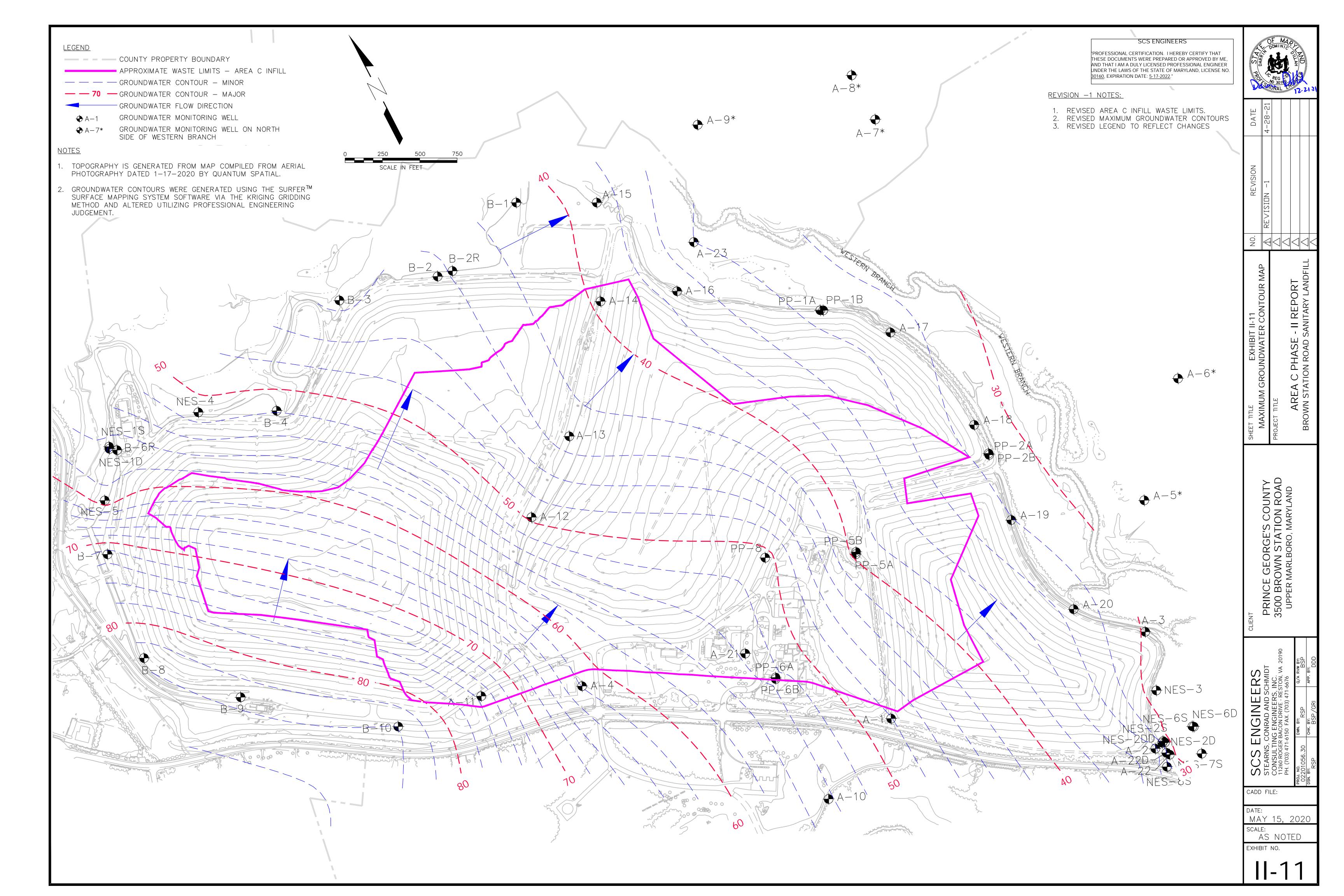

GRANULAR SOIL (16<N<32) ---- GROUND ELEVATION (2020)

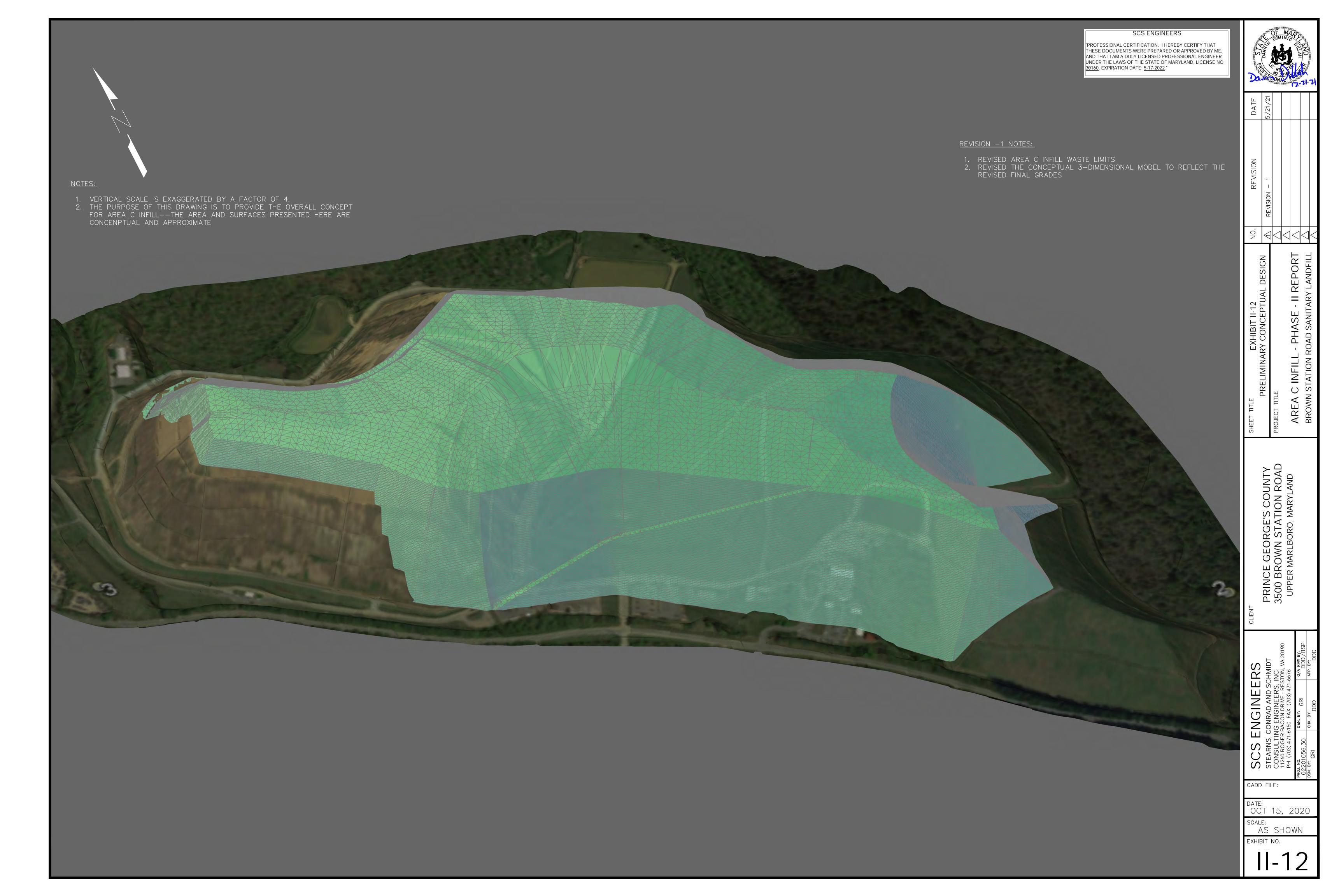

— — MAXIMUM GROUNDWATER ELEVATION

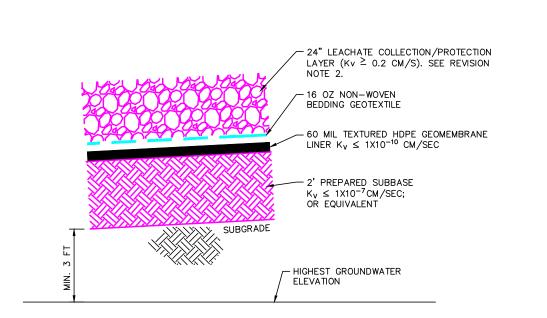

ASEB=APPROXIMATE SURFACE ELEVATION OF BORING


NOTE:


1. SURFACE ELEVATIONS OF RFW-11 AND M-4 SOIL BORINGS ARE APPROXIMATE AND BASED ON PROFESSIONAL JUDGEMENT.

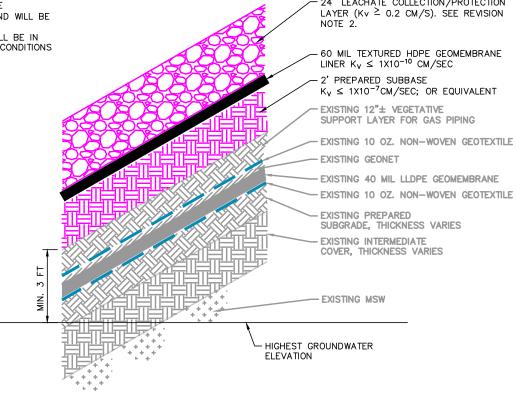






<u>NOTES</u>

- 2 FT PREPARED SUBBASE SHALL BE LOCATED MINIMUM 3 FT ABOVE HIGHEST GROUNWATER ELEVATION, AS SHOWN.
- LEACHATE COLLECTION LAYER SHALL BE DESIGNED TO ENSURE THAT LEACHATE DEPTH OVER LINER DOES NOT EXCEED 30 CM (1 FT).

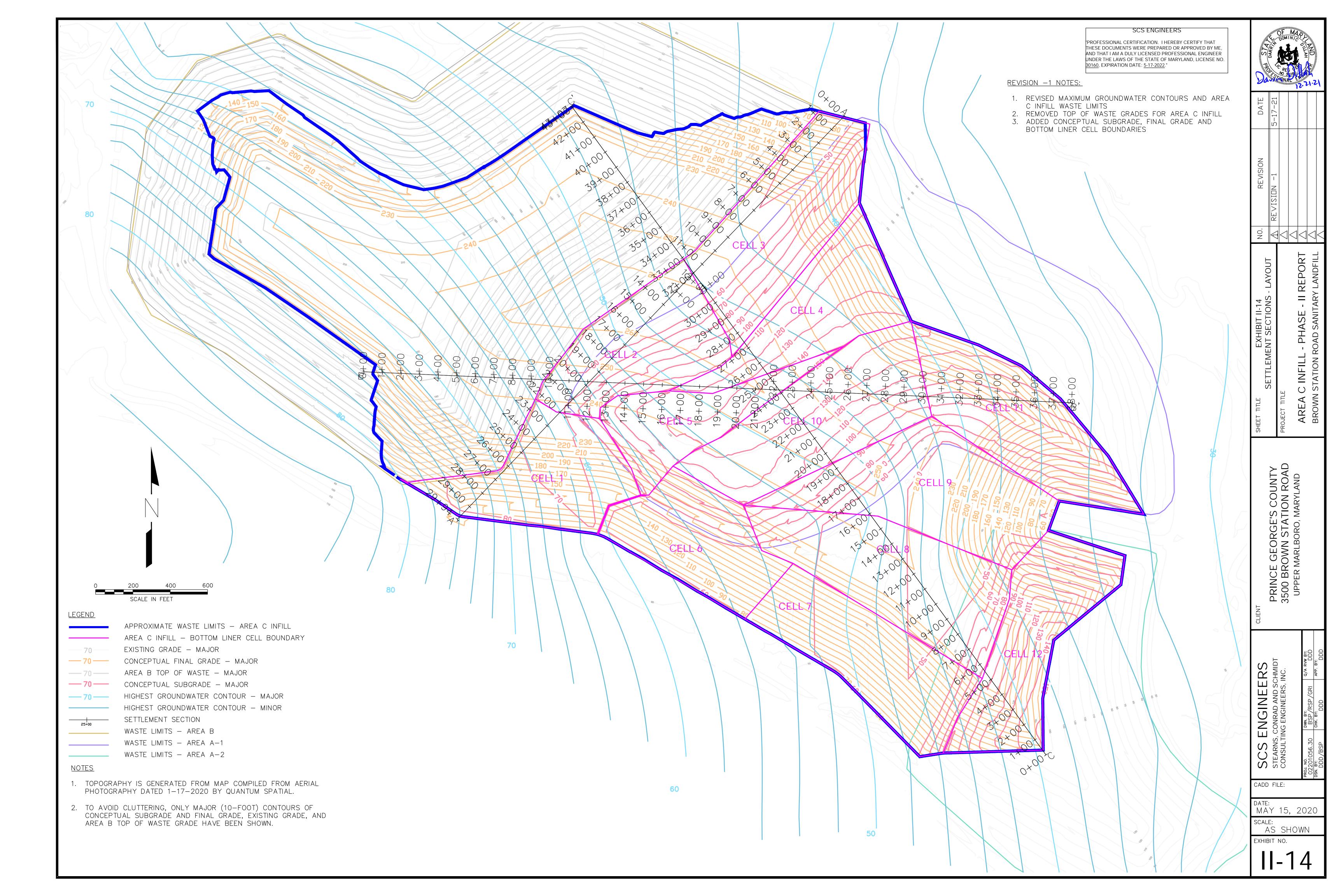

REVISION -1 NOTES

- HELP MODEL CALCULATIONS ARE ONGOING TO CONFIRM THE LEACHATE COLLECTION SYSTEM DETAILS/SPECIFICATIONS AND WILL BE INCLUDED IN THE PHASE III SUBMITTAL
- LEACHATE COLLECTION/PROTECTIVE LAYER THICKNESS SHALL BE IN ACCORDANCE WITH THE LATEST REFUSE DISPOSAL PERMIT CONDITIONS

BOTTOM LINER SYSTEM - FOR USE IN LANDFILL FLOOR AREAS

NO SCALE

BOTTOM LINER SYSTEM - FOR USE OVER EXISTING SLOPED CAPPED AREAS ONLY NO SCALE


NO. REVISION DATE 5/21/21 REVISION - 1

24" LEACHATE COLLECTION/PROTECTION

SCS ENGINEERS

PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

280 270 - CONCEPTUAL FINAL GRADE (AREA C INFILL) 260 240 230 220 210 200 190 180 -CELL|3+ 170 160 150 140 120 110 100 90 -- EXISTING GRADE 80 70 60 50 MAX GROUNDWATER 40 0+00 1+00 2+00 2+00 3+00 3+00 11+00 11+00 12+00 12+00 21+00 12+00 21+00 22+00 22+00 23+00 2

STATION

SECTION A-A' PROFILE

SCS ENGINEERS

PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

<u>REVISION -1 NOTES:</u>

- 1. REVISED MAXIMUM GROUNDWATER CONTOURS AND AREA C INFILL WASTE LIMITS
- REMOVED TOP OF WASTE GRADES FOR AREA C INFILL
 ADDED CONCEPTUAL SUBGRADE, FINAL GRADE AND BOTTOM LINER CELL BOUNDARY

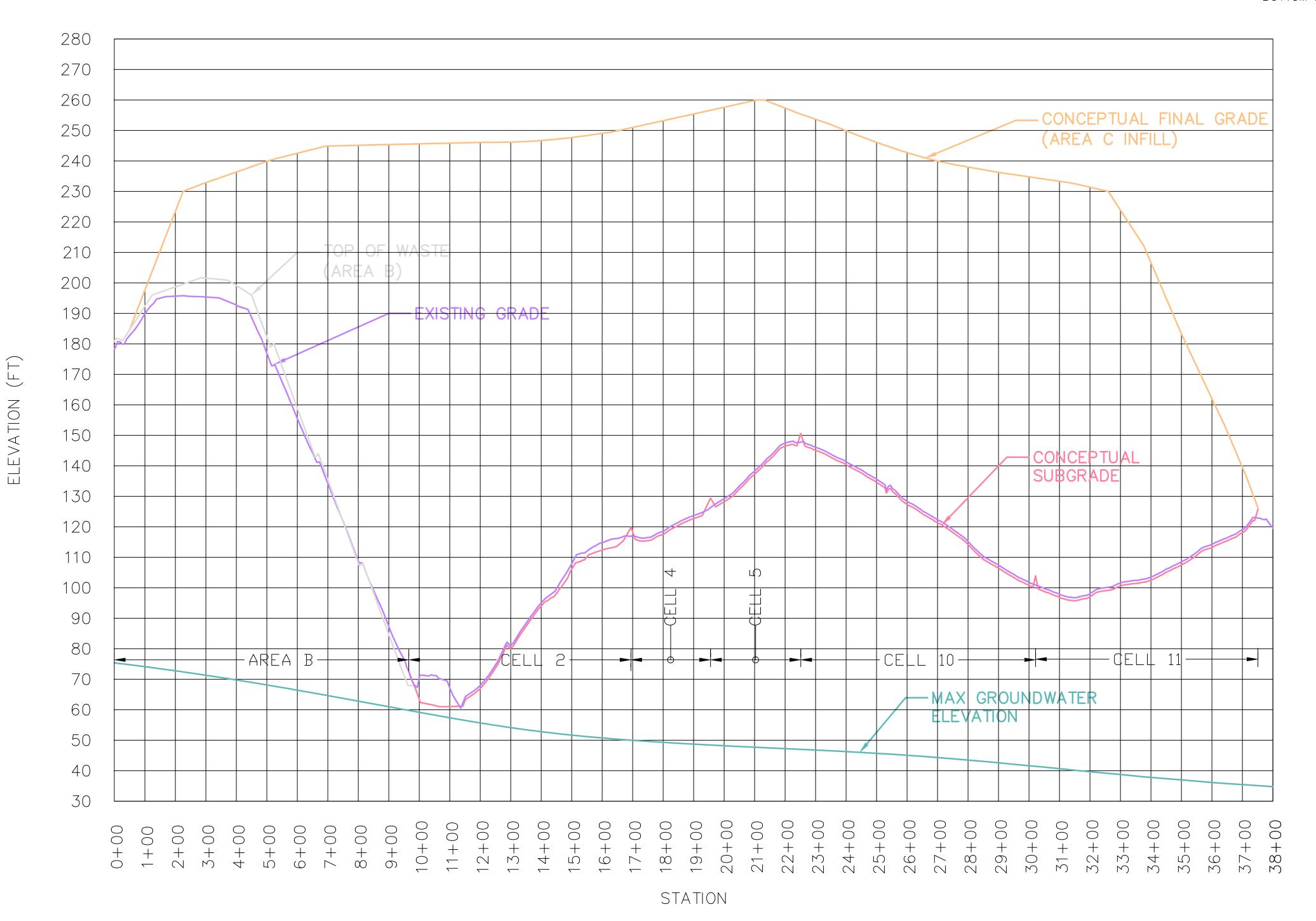
REVISION	REVISION -1 5-1					
NO.	\leq	1		\triangleleft	\langle	
SHEET TITLE EXHIBIT II-15	FROFILE - SECTION A-A	PROJECT TITLE		AREA C INFILL - PHASE - II REPORT	BROWN STATION BOAD SANITARY I ANDEILI	
	PRINCE GEORGE'S COUNTY		LIPPER MARI RORO MARYI AND			

SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC.
--

CADD FILE:

DATE: MAY 15, 2020

AS SHOWN EXHIBIT NO.


II-15

PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."

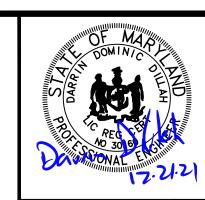
REPORT

<u>REVISION -1 NOTES:</u>

- 1. REVISED MAXIMUM GROUNDWATER CONTOURS AND AREA C INFILL WASTE LIMITS
- 2. REMOVED TOP OF WASTE GRADES FOR AREA C INFILL 3. ADDED CONCEPTUAL SUBGRADE, FINAL GRADE AND BOTTOM LINER CELL BOUNDARY

SECTION B-B' PROFILE

SCS ENGINEERS
STEARNS, CONRAD AND SCHMIDT
CONSULTING ENGINEERS, INC.

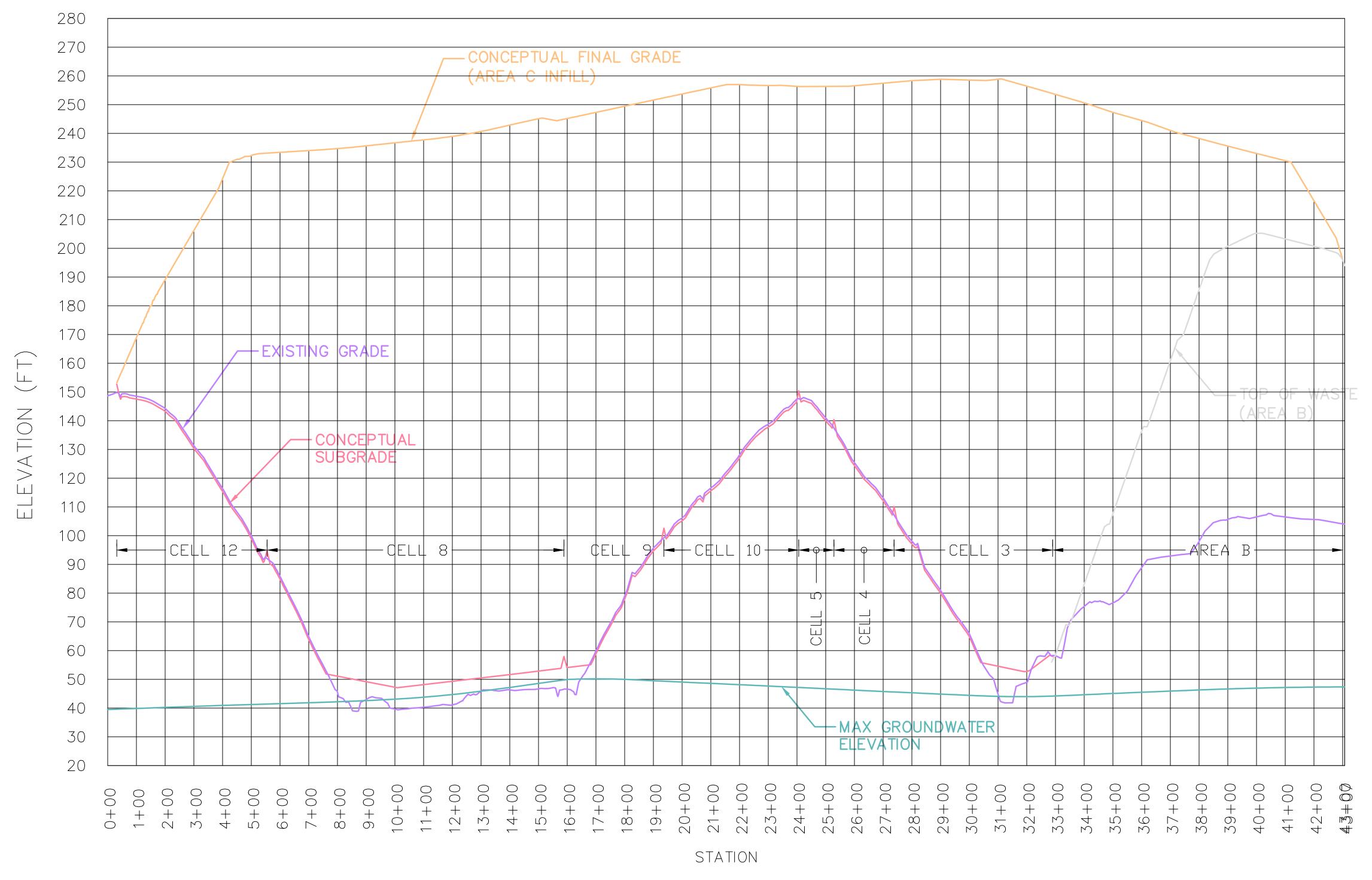

PRINCE GEORGE'S COUNTY 3500 BROWN STATION ROAD UPPER MARLBORO, MARYLAND

CADD FILE:

DATE: MAY 15, 2020

AS SHOWN EXHIBIT NO.

'PROFESSIONAL CERTIFICATION. I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 30160, EXPIRATION DATE: 5-17-2022."


II REPORT

ARE,

PRINCE GEORGE'S COUNTY 3500 BROWN STATION ROAD UPPER MARLBORO, MARYLAND

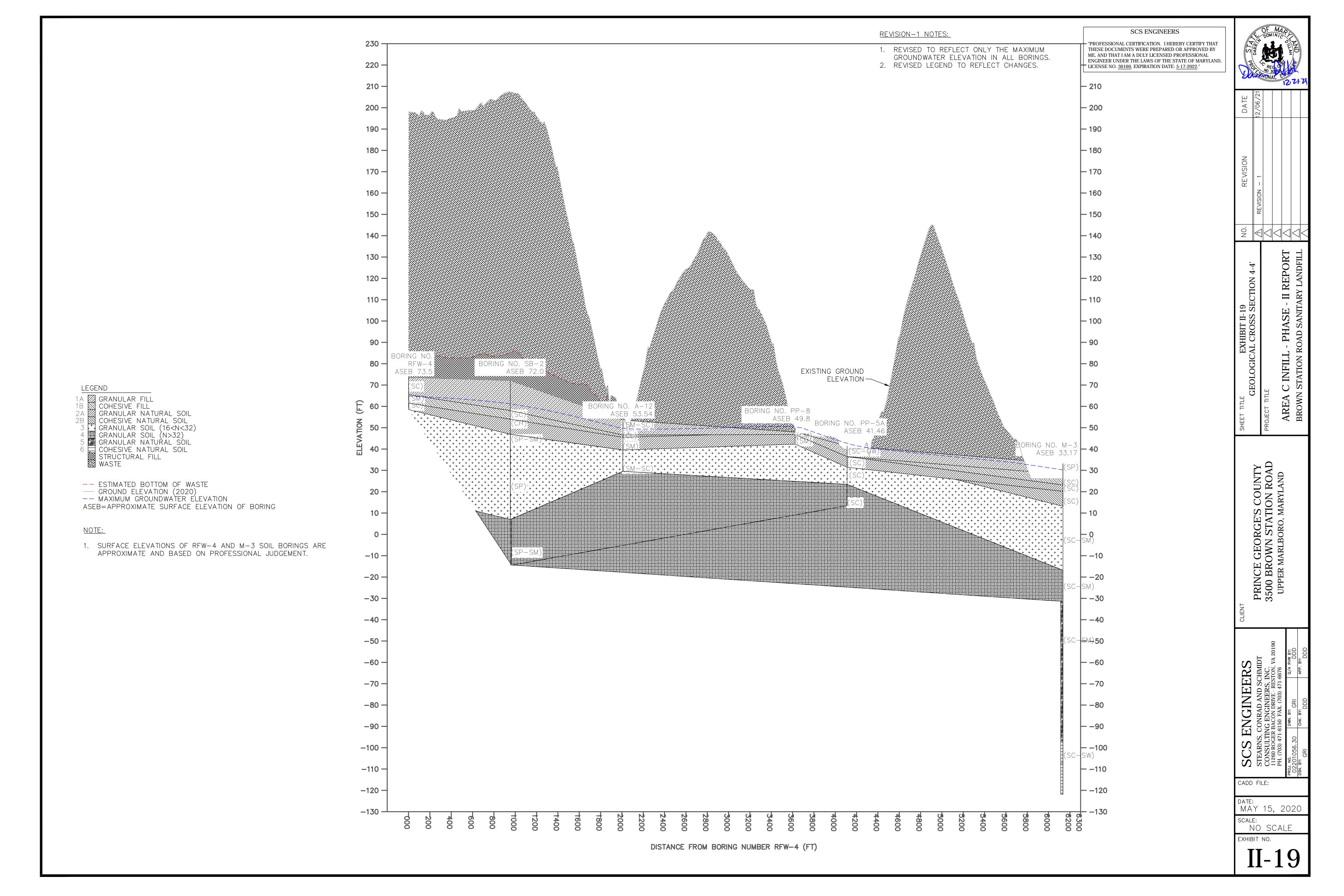
<u>REVISION -1 NOTES:</u>

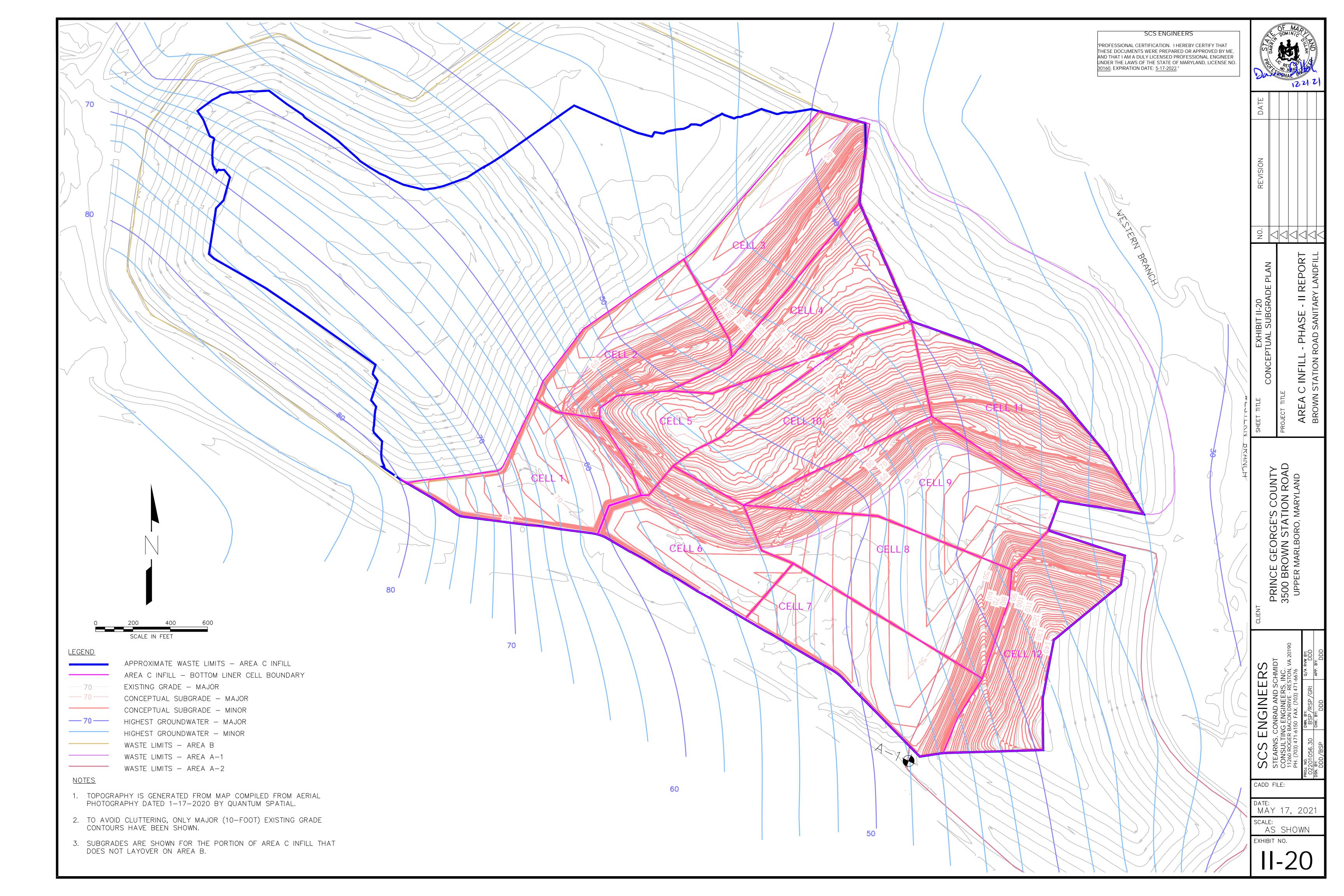
- 1. REVISED MAXIMUM GROUNDWATER CONTOURS AND AREA C INFILL WASTE LIMITS
- 2. REMOVED TOP OF WASTE GRADES FOR AREA C INFILL
- 3. ADDED CONCEPTUAL SUBGRADE, FINAL GRADE AND BOTTOM LINER CELL BOUNDARY

SECTION C-C' PROFILE

CADD FILE:

SCS ENGINEERS
STEARNS, CONRAD AND SCHMIDT
CONSULTING ENGINEERS, INC.


DATE: MAY 15, 2020


AS SHOWN EXHIBIT NO.

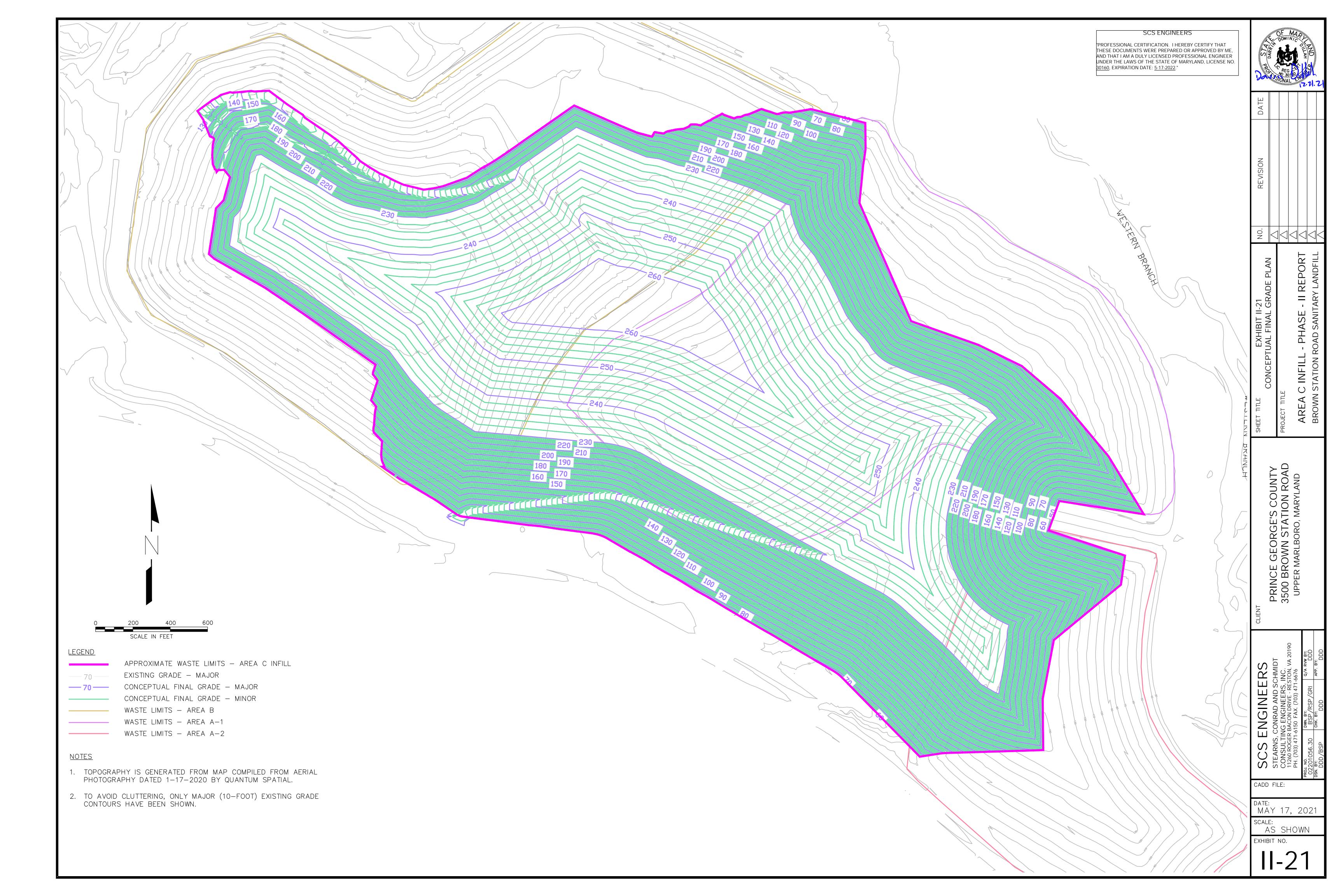

11-17

EXHIBIT II-18. LEACHATE PRETREATMENT PLANT SCHEMATIC

APPENDICES

APPENDIX II-A

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _1_ OF __2_ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __10/13/2020_

Table A-1. Coastal Plain Stratigraphy of Prince George's County, Maryland

		Approximate		
Series	Formation	Thickness (ft)	Physical Character	Water Bearing Properties
Recent and Pleistocone	Lowland deposits	0 – 150	Sand, gravel, sandy clay and clay	Largely undeveloped as a source of groundwater
Pleistocene and Pliocene	Upland deposits	0 – 55	Irregularly stratified cobbles, gravel, sand and clay lenses	Source of numerous rural water supplies
Miocene	St. Marys	0 – 50	Sand, clayey sand, and blue clay; fossiliferous	Not an important aquifer
	Choptank	20 – 105	Fine sand, sandy clay, and sand with fossiliferous layers	Not an important aquifer
	Calvert	20 – 80	Sandy clay and fine sand, fossiliferous, diatomaceous earth	Yields small quantities of water
Eocene	Piney point	0 – 60	Sand, slightly glauconitic, with intercalated "rock" layers	Hydrogeologically connected with underlying Nanjemoy formation. Yields up to 200 gallons per minute reported from drilled wells
	Nanejoy	40 – 240	Glauconitic sand with clayey layers. Basal part is red or gray clay	An important aquifer in Calvertand St. Mary's Counties
	Aquia green sand	30 – 203	Glauconitic, greenish to brown sand with indurated or "rock" layers in middle and basal parts	An important aquifer in Calvert and St. Mary's Counties
Paleocene	Brightseat	0 – 40	Gray to dark gray micaceous silty and sandy clay	Not known to be an aquifer in Southern Maryland
Upper Cretaceous	Monmouth and Matawan	20 – 135	Sandy clay and sand, dark gray to black, with some glauconite. Basal part is lighter in color and less glauconitic.	Not a major aquifer in Southern Maryland
	Magothy	0 – 140	Light gray to white sand and fine gravel with interbedded clay layers; contains pyrite and lignite	An important aquifer in Prince George's and Anne Arundel Counties
	Raritan	100	Interbedded sand and clay with ironstone nodules, locally contains indurated layers	Utilized chiefly in Anne Arundel County

Offices Nationwide

APPENDIX II-A

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _2_ OF __2_ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __10/13/2020__

		Approximate		
Series	Formation	Thickness (ft)	Physical Character	Water Bearing Properties
Upper Cretaceous	Patapsco	100 – 650	Interbedded sand, clay, and sandy clay; color variegated but chiefly hues of red and yellow	An important aquifer in Prince George's and Anne Arundel Counties
	Arundel Clay	25 – 200	Red, brown, and gray clay, in places contains ironstone nodules and plant remains	Not generally a water bearing formation in Southern Maryland
Lower Cretaceous	Patuxent	100 – 450+	Chiefly gray and yellow sand with interbedded clay, kaolonized feldspar and lignite common. Locally clay layers predominate	Utilized by wells in parts of Prince George's and Anne Arundel Counties
		Unknown	Chiefly gneiss, granite, gabbro, metagabbro, quartz diotite, and granitized schist	Yelds moderate supplies of groundwater

Source: Groundwater in Prince George's County by Frederick K. Mack, Bulletin 29, Maryland Geologic Survey, 1966

APPENDIX II-B

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _1_ OF __2_ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __10/13/2020__

Table B-1. Production Wells within One Half Mile of the Brown Station Road Sanitary Landfill Site

							Well	Location			Total	Well 0	Casing		V	Vell Scr	een		Pumping	Water Level
				Water	Replacement	Latitude	Longitude	Converted from	om LAT-LONG	Permit Issue	Depth		Dia.		Dia.	Тор	Bottom	Length	Rate	Before Pumping
Well-ID	Permit #	City	State	Use for	Well	(degree)	(degree)	Northing (ft)	Easting (ft)	Date	(ft)	Туре	(inch)	Туре	(inch)	(ft)	(ft)	(ft)	(GPM)	(ft)
DW-1	PG731104	Upper Marlboro	MD	DW	N	38.835485	76.771507	425748.7760	1377419.3928	7/30/1979	316	ST	4	ST	3	303	313	10	100	145
DW-2	PG710030	Upper Marlboro	MD	DW	S	38.849214	76.771463	430748.8280	1377419.4087	10/28/1970										
DW-3	PG710031	Upper Marlboro	MD	DW	N	38.849214	76.771463	430748.8280	1377419.4087	10/28/1970	255	ST	4	PL		248	255	7	20	86
DW-4	PG730476	Upper Marlboro	MD	DW	Υ	38.835485	76.771507	425748.7760	1377419.3928	11/19/1975	284	ST	4	ST	3	279	284	5	30	94
DW-5	PG730786	Upper Marlboro	MD	DW	Υ	38.849214	76.771463	430748.8280	1377419.4087	9/27/1977										
DW-6	PG730791	Upper Marlboro	MD	DW	Υ	38.835485	76.771507	425748.7760	1377419.3928	10/5/1977	299	PL	4	PL	2	279	299	20	25	120
DW-7	PG710059	Upper Marlboro	MD	DW	Υ	38.849214	76,771463	430748.8280	1377419.4087	3/4/1971	102	ST	4	PL	2	97	102	5	5	30
DW-8	PG730499	Upper Marlboro	MD	DW	S	38.835485	76.771507	425748.7760	1377419.3928	2/13/1976	246	ST	4	ST	3	240	246	6	30	66
DW-9	PG731470	Upper Marlboro	MD	DW	Y	38.849207	76.767952	430748.8011	1378419.3265	6/29/1981	2.0	- 31	7	31	J	240	240	0	30	00
DW-10	PG730515	Upper Marlboro	MD	DW	Y	38.835485	76.771507	425748.7760	1377419.3928	3/31/1976	110	PL	4	PL	2	103	110	7	9	54
DW-10	PG720003	Upper Marlboro	MD	DW	N N	38.849214	76.771463	430748.8280	1377419.3928	6/29/1971	225	ST	2	BR	2	200	225	25	16	67
 		· ·																		
DW-12	PG730527	Upper Marlboro	MD	DW	Y	38.849214	76.771463	430748.8280	1377419.4087	5/3/1976	258	ST	4	ST	3	252	258	6	12	99
DW-13	PG730846	Upper Marlboro	MD	DW	S	38.849214	76.771463	430748.8280	1377419.4087	12/21/1977	208	ST	4	ST	2	198	208	10	120	65
DW-14	PG720024	Upper Marlboro	MD	DW	N	38.835485	76.771507	425748.7760	1377419.3928	9/8/1971	300	ST	4	ST	2	285	300	15	11	145
DW-15	PG730556	Upper Marlboro	MD	DW	Y	38.849214	76.771463	430748.8280	1377419.4087	6/17/1976	108	PL	4	PL	2	103	108	5	15	21
DW-16	PG730559	Upper Marlboro	MD	DW	Υ	38.835485	76.771507	425748.7760	1377419.3928	7/2/1976	304	ST	4	ST	3	299	304	5	30	97
DW-17	PG720052	Upper Marlboro	MD	DW	N	38.835485	76.771507	425748.7760	1377419.3928	11/26/1971	290	ST	4	ST	3	285	290	5	25	126
DW-18	PG720058	Upper Marlboro	MD	DW	Υ	38.835485	76.771507	425748.7760	1377419.3928	12/21/1971	295	ST	2	ST	1	280	295	15	9	140
DW-19	PG730241	Upper Marlboro	MD	DW	Υ	38.849214	76.771463	430748.8280	1377419.4087	6/20/1974	104	PL	4	PL	2	94	104	10	12	9
DW-20	PG730576	Upper Marlboro	MD	DW	N	38.849214	76.771463	430748.8280	1377419.4087	7/19/1976	300	ST	4	ST	2	269	279	10	25	125
DW-21	PG730884	Upper Marlboro	MD	DW	N	38.849214	76.771463	430748.8280	1377419.4087	4/17/1978	252	ST	4	PL	2	220	252	32	15	70
DW-22	PG730901	Upper Marlboro	MD	DW	S	38.835485	76.771507	425748.7760	1377419.3928	5/8/1978	315	ST	4	ST	2	303	313	10	75	119
DW-23	PG720061	Upper Marlboro	MD	DW	Υ	38.849214	76.771463	430748.8280	1377419.4087	1/7/1972	217	ST	2	ST	1	202	217	15	9	50
DW-24	PG720063	Upper Marlboro	MD	DW	N	38.849214	76.771463	430748.8280	1377419.4087	1/12/1972	220	ST	4	ST	2	205	220	15	9	60
DW-25 DW-26	PG730905 PG730918	Upper Marlboro Upper Marlboro	MD MD	DW DW	N N	38.849214 38.835485	76.771463 76.771507	430748.8280 425748.7760	1377419.4087	5/16/1978 6/22/1978	260	ST	4	ST	3	250	260	10	30	108
DW-27	PG810098	Upper Marlboro	MD	DW	Y	38.862975	76.788979	435748.5065	1377419.3720	12/8/1981	200	ST	4	ST	3	183	193	10	50	52
DW-28	PG720089	Upper Marlboro	MD	DW	N	38.835485	76.771507	425748.7760	1377419.3928	5/3/1972										-
DW-29*	PG730320	Upper Marlboro	MD	DW	Υ	38.849247	76.789019	430748.8102	1372419.5384	12/2/1974	260	ST	4	ST	2	255	260	5	30	115
DW-30	PG730637	Upper Marlboro	MD	DW	Y	38.849214	76.771463	430748.8280	1377419.4087	12/22/1976	210	ST	4	PL	2	205	210	5	12	70
DW-31 DW-32	PG730948 PG730654	Upper Marlboro Upper Marlboro	MD MD	DW DW	Y N	38.849214 38.849214	76.771463 76.771463	430748.8280 430748.8280	1377419.4087	8/18/1978 1/31/1977										
DW-32*	PG730034	Upper Marlboro	MD	DW	Y	38.849214	76.771463	430748.8280	1377419.4087	9/8/1972	107	PL	4	PL	2	102	107	5	10	12
DW-34*	PG730684	Upper Marlboro	MD	DW	Ϋ́	38.849214	76.771463	430748.8280	1377419.4087	4/1/1977	112	PL	4	PL	2	107	112	5	10	12
DW-35	PG730996	Upper Marlboro	MD	DW	Υ	38.835485	76.771507	425748.7760	1377419.3928	11/3/1978	274	PL	4	PL	2	269	274	5	15	95
DW-36	PG700013	Upper Marlboro	MD	DW	S	38.835485	76.771507	425748.7760	1377419.3928	8/21/1969	270	ST	2	ST		240	270	30	10	140
DW-37	PG730697	Upper Marlboro	MD	DW	N Y	38.849214	76.771463	430748.8280	1377419.4087	4/14/1977	205	СТ	4	OT	2	205	205	10	45	00
DW-38	PG730705 PG731008	Upper Marlboro Upper Marlboro	MD MD	DW DW	Y	38.835485 38.849214	76.771507 76.771463	425748.7760 430748.8280	1377419.3928	5/16/1977 12/11/1978	305 245	ST PL	4	OT PL	3	295 238	305 245	10 7	45 80	98 85
DW-39	PG731008	Upper Marlboro	MD	DW	Y	38.835485	76.771507	425748.7760	1377419.4087	12/11/1978	303	ST	4	ST	3	293	303	10	40	100
DW-41	PG700024	Upper Marlboro	MD	DW	N	38.849214	76.771463	430748.8280	1377419.4087	10/15/1969	221	ST	2	BR		200	221	21	15	63
DW-42	PG730062	Upper Marlboro	MD	DW	Υ	38.849214	76.771463	430748.8280	1377419.4087	2/5/1973	115	PL	4	PL	2	110	115	5	15	17
DW-43	PG730084	Upper Marlboro	MD	DW	Y	38.835485	76.771507	425748.7760	1377419.3928	4/18/1973	260	OT	4	PL	2	255	260	5	50	80
DW-44	PG730087	Upper Marlboro	MD	DW	Υ	38.849214	76.771463	430748.8280	1377419.4087	5/4/1973	115	PL	4	PL	2	110	115	5	5	12

APPENDIX II-B

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _2_ OF __2__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __10/13/2020

							Well	Location			Total	Well (Casing		V	Vell Scr	een		Pumping	Water Level
				Water	Replacement	Latitude	Longitude	Converted from	om LAT-LONG	Permit Issue	Depth		Dia.		Dia.	Тор	Bottom	Length	Rate	Before Pumping
Well-ID	Permit #	City	State	Use for	Well	(degree)	(degree)	Northing (ft)	Easting (ft)	Date	(ft)	Туре	(inch)	Туре	(inch)	(ft)	(ft)	(ft)	(GPM)	(ft)
DW-45	PG730727	Upper Marlboro	MD	DW	Υ	38.835485	76.771507	425748.7760	1377419.3928	6/15/1977	242	PL	4	PL	2	237	242	5	45	80
DW-46	PG700073	Upper Marlboro	MD	DW	S	38.835485	76.771507	425748.7760	1377419.3928	6/1/1970	295	ST	2	BR		270	295	25	12	80
DW-47	PG731070	Upper Marlboro	MD	DW	N	38.835485	76.771507	425748.7760	1377419.3928	5/8/1979										
DW-48	PG810907	Upper Marlboro	MD	DW	Υ	38.846461	76.767961	429748.7168	1378419.3054	7/26/1985	300	PL	4	ST	3	290	300	10	60	150
DW-49	PG730138	Upper Marlboro	MD	DW	Υ	38.835485	76.771507	425748.7760	1377419.3928	9/26/1973	27	CO	30						6	11
DW-50	PG731095	Upper Marlboro	MD	DW	Υ	38.849214	76.771463	430748.8280	1377419.4087	7/11/1979	212	ST	4	ST	3	202	212	10	30	65
DW-51	PG811594	Upper Marlboro	MD	DW	N	38.849277	76.806576	430748.6609	1367419.3880	5/28/1987	210	PL	4	PL	3	200	210	10	12	70
DW-52	PG811595	Upper Marlboro	MD	DW	N	38.849277	76.806576	430748.6609	1367419.3880	7/29/1987	210	PL	4	PL	3	200	210	10	12	75
DW-53	PG810960	Upper Marlboro	MD	DW	Υ	38.846461	76.767961	429748.7168	1378419.3054	9/13/1985	210	ST	4	PL	2	200	210	10	30	89
DW-54	PG811071	Upper Marlboro	MD	DW	Υ	38.854705	76.771445	432748.6336	1377419.5282	12/11/1985	210	PL	4	PL	3	200	210	10	45	65
DW-55	PG811134	Upper Marlboro	MD	DW	N	38.852017	76.803057	431748.6976	1368419.4248	4/25/1986	214	PL	4	PL	3	200	210	10	12	90
DW-56	PG882455	Upper Marlboro	MD	DW	N	38.838257	76.785541	426748.6230	1373419.4543	2/18/1992	235	PL	4	PL	3	221	230	9	12	85
DW-57	PG882523	Upper Marlboro	MD	DW	Υ	38.835498	76.778528	425748.5817	1375419.4587	5/20/1992	190	PL	4	PL	2	183	190	7	30	52
DW-58	PG920931	Upper Marlboro	MD	DW	Υ	38.857458	76.774948	433748.7839	1376419.5002	3/13/1996	242	PL	4	ST	3	232	242	10	30	85
DW-59*	PG880509	Upper Marlboro	MD	DW	N	38.843767	76.796058	428748.4683	1370419.3327	9/8/1989										
DW-60	PG940779	Upper Marlboro	MD	DW	Υ	38.851959	76.771454	431748.5485	1377419.4690	11/9/1998	215	PL	4	ST	2	190	200	10	30	95
DW-61	PG941741	Upper Marlboro	MD	DW	Υ	38.851959	76.771454	431748.5485	1377419.4690		285	PL	4	PL	3	275	285	10	80	120
DW-62	PG950628	Upper Marlboro	MD	DW	N	38.862963	76.781955	435748.8363	1374419.3908	10/24/2005	270	PL	4	PL	2	260	270	10	50	7
IFW-1	PG710060	Upper Marlboro	MD		N	38.849214	76.771463	430748.8280	1377419.4087	10/7/1970	220	ST	4	ST	2	211	220	9	10	80
IFW-2	PG730951	Upper Marlboro	MD	F	Υ	38.849214	76.771463	430748.8280	1377419.4087	8/18/1978	246	ST	4	ST	3	240	246	6	30	78
IFW-3	PG720122	Upper Marlboro	MD	F	N	38.862975	76.788979	435748.5065	1372419.3730	6/9/1972	250	ST	4	PL	2	245	250	5	50	66
IFW-4	PG730129	Upper Marlboro	MD		S	38.835485	76.771507	425748.7760	1377419.3928	7/2/1973	274	ST	4	ST	3	268	274	6	25	120
IFW-5	PG812075	Upper Marlboro	MD		Υ	38.846461	76.767961	429748.7168	1378419.3054	7/19/1988	305	ST	4	ST	2	295	305	10		

Notes: 1. Blank means no data was available/provided.

- 2. Well identification (Well-ID) DW- and IFW- means drinking water well and irrigation/farming well, respectively.
- 3. Water use symbols DW, F, and I means drinking water, farming, and irrigation well, respectively.
- 4. Replacement well symbols Y, N, and S means replacement well, new well, and unknown, respectively.
- 5. Casing/screen type symbols BR, CO, OT, PL, and ST means brass/bronze, concrete, others, plastic, and steel, respectively.
- 6. Well screen length is calculated (length = bottom top).
- 7. Drinking water wells with '*' (DW-29, 33, 34, and 59) are in Water Science Administration record but no longer existing.

APPENDIX II-C

GROUNDWATER MONITORING DATA AND OUTLIER ANALYSIS

GROUNDWATER MONITORING DATA

Monthly groundwater monitoring data from 2005 through 2020 is provided in Table C-1 of this Appendix.

OUTLIER ANALYSES^[14,15,16,17]

Graphical and parametric screening tools were used to identify potential outliers and reviewed GWE measurements within the GWM well's vicinity to confirm. The following approach was used to identify potential outliers in the GWE data:

- 1. <u>Graphical Screening Tool</u>: Graphs^[14,15] such as Box-Whisker plots, ranked data plots, normal probability plots, and time plots can be used to identify observations that are too small or too large compared to the rest of the sample population. Box-Whisker plots were used for initial screening of outliers and is described in further detail in Exhibit II-C-1.
- 2. Statistical Tests: To determine outliers, EPA[14,15] recommends two statistical tests: Dixon's (Extreme Value) test and generalized ESD (Extreme Studentized Deviate) test also known as the Rosner's test[16,17]. Dixon's test is generally used to identify one outlier at a time, whereas Rosner's test is used to identify multiple outliers at a time. For Rosner's test, EPA[15] recommends a minimum sample size of 25. SCS used Rosner's test to identify up to 10 outliers for GWM wells which had mild or extreme high outliers identified using the graphical screening tool. Rosner's outlier analyses were performed at 95% confidence interval bound (i.e., a p-value < 0.05) and is further described in Exhibit II-C-1.
- 3. <u>Outlier Judgment:</u> For GWM wells with high outliers, GWE data for the months preceding and following the outlier were reviewed with reference to:
 - a. GWE data of GWM wells in the vicinity during the corresponding period. Because groundwater in the upper unconfined aquifer flows north or northeast across the site, GWM wells on the east and west sides of the outlier well were considered for data review.
 - b. Presence of nearby water bodies such as sedimentation basins, streams, etc.

The GWE data for the following GWM wells did not undergo outlier analyses because the sample size was below the EPA recommendation of 25. These wells were also removed from estimation of depressed and elevated groundwater conditions and highest groundwater elevations.

- Well A-22DD: This well was monitored from October 2018 through August 2019 (11 monitoring events).
- Well A-22DD-A: This well has been monitored since September 2019 (15 monitoring events).
- Well B-6: This well was not monitored after 2005 (9 monitoring events).
- Well B-6A: This well was monitored from March to June 2005 (3 monitoring events).
- Well NES-7D: This well has been monitored since January 2020 (11 monitoring events).

GWE monitoring data is presented in Table II-C-1. The outlier results presented in Exhibits II-C-2 through II-C-10 are summarized in Table II-C-2.

To assess if a high outlier should be removed, the GWE data (provided in Table II-C-1, Appendix II-C) was further reviewed, as summarized below.

GWM well A-1:

Rosner's test (Exhibit II-C-9) identified three (3) high outliers (on 8/8/2008, 1/16/2012, and 10/28/2016) at a $\geq 95\%$ confidence interval bound (i.e., a *p*-value < 0.05):

- 1. Outlier on August 8, 2008: A GWE of 52.02 ft was more than 6 ft higher than the GWE during the previous month (7/8/2008) and the following month (9/8/2008). GWE of surrounding wells, GWM Well A-2 (east) and GWM well PP-6A (west), were nearly unaffected during this same period. It was 31 ft at GWM well A-2 and about 51 ft at GWM well PP-6A. Furthermore, another nearby GWM well PP-6B exhibited GWE more than 5 ft lower than GWM well A-1 on the alleged outlier date of 08/08/2008. Due to these reasons, this outlier was removed from the data set.
- 2. Outlier on January 16, 2012: A GWE of 56.61 ft was about 10 ft higher than the GWE during the previous month (12/20/2011) and the following month (2/13/2011). Again, GWM wells on the east and west sides exhibited nearly constant GWE during this period. It was about 33 ft on the east side of GWM well A-2, it ranged from 51 ft to 52 ft on the west side GWM well PP-6A, and it was about 53 ft on the west side of GWM well PP-6B. This outlier was removed from the data set.
- 3. Outlier on October 28, 2016: A GWE of 57.31 ft was more than 10 ft higher than the GWE during the previous month (9/9/2016) and the following month (11/22/2016). Again, the GWE was almost the same on east and west sides during this period. It was about 30 ft on the east side of GWM well A-2, about 50 ft on the west side of GWM well PP-6A, and about 52 ft on the west side of GWM well PP-6B. This outlier was removed from the data set.

GWM well A-10:

Rosner's test (Exhibit II-C-10) identified one (1) high outlier at a p-value < 0.05. The outlier GWE of 58.27 ft on 7/8/2008 was more than 6 ft higher than the GWE during the previous month (6/8/2008) and the following month (8/8/2008). The GWE was almost the same during this 3-month period in nearby GWM wells PP-6A and PP-6B. It was about 51 ft and 53 ft at GWM wells PP-6A and PP-6B, respectively. Furthermore, the GWE was about 6 ft lower in nearby GWM well A-1 during June and July of 2008 compared to August 2008. This outlier was thus removed.

GWM well A-11:

Rosner's test (Exhibit II-C-9) identified four (4) high outliers at a *p*-value < 0.05:

1. Outlier on November 10, 2006: A GWE of 79.01 ft was more than 6 ft higher than the GWE during the previous month (11/10/2006) and the following month (12/14/2006), whereas the GWE on the east and west GWM wells was almost same during these three months. It was about 60 ft at GWM well A-4 on the east and about 79 ft at GWM well B-10 on the west. This outlier was removed from the data set.

- 2. Outlier on October 28, 2016: A GWE of 82.02 ft was about 10 ft higher than the GWE during the previous month (9/9/2016) and the following month (11/22/2016), whereas the GWE on the east and west GWM wells was almost same during these three months. It was about 58 to 59 ft at GWM well A-4 on the east and about 78 ft at GWM well B-10 on the west. This outlier was removed from the data set.
- 3. Outlier on July 24, 2017: A GWE of 81.26 ft was about 10 ft higher than the GWE during the previous month (6/15/207) and the following month (8/31/2017), whereas the GWE at the east and west side wells were almost same during these three months. It was about 57 ft at GWM well A-4 on the east and about 76 ft at GWM Well B-10 on the west. This outlier was removed from the data set.
- 4. Outlier on April 6, 2018: A GWE of 81.66 ft was about 10 ft higher than the GWE during the previous month (3/15/2018) and the following month (5/31/2018). The GWE at the east and west side wells were almost same during these three months. It was about 58 ft at GWM Well A-4 on the east and about 77 ft at the GWM well B-10 on the west. This outlier was removed from the data set.

GWM well A-13:

Rosner's test (Exhibit II-C-9) identified three (3) high outliers (on 1/5/2005, 2/11/2005, and 3/24/2005) at a p-value < 0.05. A GWE of about 44 ft during these monitoring events was about 2 ft higher than the GWE during the following month (4/21/2005). The GWE at this well is influenced by the water level in the Area A Sedimentation Basin 2. The normal pool elevation for this basin is 40.3 ft, which is about 4 ft lower than the outliers' GWE. These three outliers were thus removed from the data set.

GWM well A-14:

Rosner's test (Exhibit II-C-9) identified one (1) high outlier at a p-value < 0.05. A GWE of 44.82 ft on 05/13/2019 was about 5 ft higher than the GWE during the previous month (4/18/2019) and the following month (6/4/2019). The GWE at this well is also influenced by the water level in Area A Sedimentation Basin 2 which has a normal pool elevation of 40.3 ft Since this outlier GWE is more than 4 ft higher than this basin, it was removed from the data set.

GWM well A-18:

Rosner's test (Exhibit II-C-10) identified one (1) high outlier at a p-value < 0.05. A GWE of 36.25 ft on 11/10/2006 was about 6 ft higher than the GWE during the previous month (10/31/2006) and about 8 ft higher than the following month (12/14/2006). The GWE at wells east of the identified outlier, PP-2A and PP-2B, were about 29 ft during this period. As such, the outlier was removed from the data set.

GWM well A-19:

Rosner's test (Exhibit II-C-10) identified one (1) high outlier at a p-value < 0.05. A GWE of 33.82 ft on 11/10/2006 was about 5 ft higher than the GWE during the previous month (10/31/2006) and the following month (12/14/2006). The GWE at GWM well A-20 (east) and GWM wells PP-2A and PP-2B (west) were about 29 ft during this same period. As such, this outlier was removed from the data set.

GWM well A-20:

Rosner's test (Exhibit II-C-10) identified two (2) high outliers at a p-value < 0.05:

- Outlier on April 8, 2008: A GWE of 39.30 ft was about 10 ft higher than the GWE during the previous month (3/8/2008) and the following month (5/8/2008). The GWE at the GWM wells located east and west of this well were almost same during this period. It was about 30 ft at GWM well A-19 (west) and about 25 ft at GWM well A-3 (east). This outlier was removed from the data set.
- 2. Outlier on December 13, 2013: A GWE of 33.38 ft was about 3 ft higher than the GWE during the previous month (11/7/2013) and the following month (1/17/2014). However, at the west side GWM well A-19 and east side GWM well A-3, GWE during the outlier month and the following month were slightly higher than the month prior to outlier month. As such, this outlier was not removed from the data set.

GWM well A-21:

Rosner's test (Exhibit II-C-9) identified one (1) high outlier at a p-value < 0.05. A outlier GWE of 63.27 ft on 12/07/2007 was about 13 ft higher than the GWE during the previous month (11/7/2007) or the following month (1/8/2008). While the GWE was about 51 ft at GWM wells PP-6A and PP-6B (east) and about 60 ft at GWM Well A-4 (west). This outlier was removed from the data set.

GWM well PP-2A:

Rosner's test (Exhibit II-C-9) identified one (1) high outlier at a p-value < 0.05. A GWE of 31.27 ft on 03/24/2005, was about 3 ft higher than the GWE during the previous month (2/11/2005) and the following month (4/21/2005). A similar GWE trend was observed at the neighboring GWM well PP-2B. As such, this outlier was not removed from the data set.

GWM well PP-2B:

Rosner's test (Exhibit II-C-9) identified one (1) high outlier at a p-value < 0.05. A GWE of 31.44 ft on 03/24/2005 was about 3 ft higher than the GWE during the previous month (2/11/2005) and the following month (4/21/2005). A similar GWE trend was also observed at the neighboring GWM well PP-2A. As such, this outlier was not removed from the data set.

GWM well B-1:

Rosner's test (Exhibit II-C-10) identified one (1) high outlier at a p-value < 0.05. A GWE of 41.17 ft on 11/14/2018 was about 4 ft higher than the GWE during the previous month (10/16/2018) and the following month (12/05/2018). The GWE at GWM well A-15 (east) and GWM well B-2R (west) was about 1 ft higher in November 2018 than the previous and the following month's monitoring events. As such, this outlier was not removed from the data set.

GWM well B-3:

Rosner's test (Exhibit II-C-10) identified three (3) high outliers at a *p*-value < 0.05:

1. Outlier on May 4, 2006: A GWE of 45.72 ft was about 4 ft higher than the GWE during the previous month (4/6/2006) and the following month (6/12/2006). During these three months, the GWE was about 50 ft at the west side GWM well B-4. GWE at the east side

- GWM well B-2 was lower on the date of the outlier than during the previous or the following month's monitoring events. This outlier was removed from the data set.
- 2. Outlier on May 7, 2007: A GWE of 46.35 ft was about 5 ft higher than the GWE during the previous month (4/7/2007) and the following month (6/1/2007). During these three months, the GWE was about 44 ft at the east side GWM well B-2. GWE at the west side GWM well B-4 was lower on the date of outlier than during the previous or the following month's monitoring events. This outlier was removed from the data set.
- 3. Outlier on July 1, 2007: A GWE of 45.63 ft was about 4 to 5 ft higher than the GWE during the previous month (6/1/2007) and the following month (8/7/2007). During these three months, the GWE was about 44 ft at the east side GWM well B-2 and about 50 ft at the west side GWM well B-4. This outlier was removed from the data set.

GWM well B-6R:

Rosner's test (Exhibit II-C-10) identified six (6) high outliers (three (3) in 2006, two (2) in 2007, and one (1) in 2008) at a p-value < 0.05. Note that GWM wells NES-1D, NES-1S, NES-4 and NES-5 were not constructed. At that time, GWM wells B-4 and B-7 were existing in the vicinity of GWM well B-6R.

- 1. Outliers on June 12 and July 25, 2006: A GWE of 61.75 ft on 6/12/2006 and 61.25 ft on 7/25/2006 were about 6 ft higher than the GWE during the previous month (5/4/2006) and the following month (8/28/2006). During these four months, the GWE was about 68 ft at nearby GWM well B-7 and about 50 ft at nearby GWM well B-4. Both outliers were removed from the data set.
- 2. Outlier on November 10, 2006: A GWE of 62.45 ft on 11/10/2006 was about 6 ft higher than the GWE during the previous month (10/31/2006) and the following month (12/14/2006). During these four months, the GWE at nearby GWM well B-4 was 13 ft lower on the outlier date than during the previous or following month's monitoring events. GWE at the nearby GWM well B-7 was about 50 ft As such, this outlier was removed from the data set.
- 3. Outliers on November 7 and December 7, 2007: A GWE of 61.75 ft on 11/7/2008 and 12/7/2006 were about 6 ft higher than the GWE during the previous month (10/7/2008) and the following month (1/8/2008). During these four months, the GWE was about 68 ft at nearby GWM Well B-7 and about 50 ft at nearby GWM well B-4. Both outliers were removed from the data set.
- 4. Outlier on December 8, 2008: A GWE of 64.90 ft was about 9 ft higher than the GWE during the previous month (11/8/2006) and the following month (1/26/2009). During these four months, the GWE was about 69 ft at nearby GWM well B-7 and about 50 ft at nearby GWM well B-4. This outlier was removed from the data set.

GWM well B-8:

Rosner's test (Exhibit II-C-10) identified two (2) high outliers at a *p*-value < 0.05:

- 1. Outlier on November 25, 2009: A GWE of 83.59 ft was only 1 ft higher than the GWE during the previous month (10/29/2009) and the following month (12/30/2009). As such, the outlier was not removed from the data set.
- 2. Outlier on October 29, 2020: A GWE of 84.49 ft was about 4 ft higher than the GWE during the previous month (9/11/2020) and the following month (11/24/2020). During these three months, the GWE at the east side GWM well B-9 was about 81 ft and about 73 ft at the west side GWM well B-7. This outlier was removed from the data set.

GWM well NES-1S:

Rosner's test (Exhibit II-C-10) identified one (1) high outlier at a p-value \leq 0.05. A GWE of 58.77 ft on 02/20/2017 was about 3 ft higher than the GWE during the previous month (1/5/2017) and the following month (3/17/2017). During these three months, the GWE at nearby Wells B-6R and NES-1D was about 56 ft and 54 ft, respectively. As such, this outlier was removed from the data set.

GWM Well NES-6D:

Rosner's test (Exhibit II-C-10) identified One (1) high outlier at a p-value < 0.05. A GWE of 29.39 ft on 9/11/2020 were less than 1-ft higher than the GWE during the previous month and the following month's monitoring events. The outlier was not removed from the data set.

GWM well NES-6S:

Rosner's test (Exhibit II-C-10) identified two (2) high outliers at a p-value < 0.05. A GWE of 29.4 ft on 9/11/2020 and a GWE of 29.21 ft on 12/14/2020 were less than 2 ft higher than the GWE during the previous month and the following month's monitoring events. These outliers were not removed from the data set.

APPENDIX II-C

CALCULATED BY: __GRI/BSP_ CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

TABLE C-1. GROUNDWATER ELEVATION (ff-AMSL) FROM 2005 THROUGH 2020 (BROWN STATION ROAD SANITARY LANDFILL)

A. CRITICAL-GWM-WELLS SET

Date	A-1	A-4	A-11	A-12	A-13	A-14	A-21	PP-2A	PP-2B	PP-5A	PP-5B	PP-6A	PP-6B	PP-8	Mean GWE
Monitored	A-1	A-4	Α-11	A-12	A-13		water Ele			III-JA	11-30	11-0A	11-00	11-0	(ff-AMSL)
1/5/2005	48.10	61.02	73.39	46.95	43.95+	36.46	51.06	28.26	28.45	37.13	37.86	50.82	52.30	44.67	45.88
2/11/2005	46.33	61.27	67.62	46.99	43.87+	36.49	49.03	28.44	28.63	37.13	37.00	51.08	52.51	44.76	45.19
3/24/2005	46.53	61.39	73.78	47.29	44.19+	38.71	51.25	31.27	31.44	37.88	37.64	50.96	52.45	45.01	46.58
4/21/2005	46.86	61.33	74.03	46.86	41.93	38.77	51.59	28.15	28.36	37.21	37.00	51.41	53.00	44.63	45.80
5/24/2005	46.68	61.45	74.06	46.93	41.83	35.21	51.45		29.44	37.28	36.97	51.25	52.79	44.77	46.93
6/8/2005	46.58	61.02	73.88	47.13	41.82	35.23	51.38	29.32	29.51	37.13	36.82	50.99	52.77	45.13	45.61
7/1/2005	45.95	60.22	73.43	45.90	41.39	34.66	51.23	27.75	27.94	36.43	36.22	50.83	52.49	44.37	44.92
8/15/2005	45.74	59.57	73.41	45.23	41.07	35.19	51.56	27.75	27.74	36.62	36.34	50.63	52.10	44.73	44.87
9/7/2005	45.28	59.01	72.44	44.93	40.59	35.14	51.37	27.47	27.46	36.21	35.97	50.46	51.96	43.95	44.45
11/18/2005	44.93	59.01	72.52	45.73	40.87	35.34	51.12	28.85	28.85	36.93	36.72	50.28	51.78	44.35	44.81
12/27/2005	45.79	59.96	71.73	46.78	41.26	33.79	50.72	29.21	29.56	37.26	36.97	51.23	53.04		45.18
2/6/2006	46.27	59.72	73.36	47.73	41.73	34.25	51.45	28.83	30.39	37.41	37.15	50.66	52.09	45.15	45.44
3/24/2006	46.02	59.94	72.29	45.82	40.93	32.81	50.80	28.05	28.16	36.93	36.48	51.44	51.32	44.24	44.66
4/6/2006	45.83	59.72	72.63	46.60	40.87	32.84	50.78	28.17	28.36	36.71	36.52	51.31	51.04	44.25	44.69
5/4/2006	45.33	59.92	72.38	45.78	40.81	31.74	50.63	27.77	28.14	35.97	35.71	50.20	51.93	44.44	44.34
6/12/2006	45.57	59.95	72.78	45.09	38.78	33.36	50.55	28.23	28.56	36.55	36.33	50.19	51.89	44.53	44.45
7/25/2006	45.38	59.17	72.72	45.03	38.59	33.58	50.53	28.07	28.26	36.51	36.32	50.13	51.84	44.15	44.31
8/28/2006	44.90	58.63	72.13	44.55	40.13	32.78	51.04	27.38	27.38	35.74	35.53	50.12	51.69	44.37	44.03
9/11/2006	45.73	56.97	72.15	45.47	40.28	39.64	49.55	28.27	28.38	37.31	37.10	50.28	51.79	43.81	44.77
10/31/2006	46.23	59.12	72.68	45.88	40.79	33.04	52.78	28.37	28.41	37.40	37.15	50.37	51.79	43.91	44.85
11/10/2006	46.63	60.37	79.01+	43.33	38.43	35.39	52.63	28.61	29.61	37.93	38.22	51.04	52.69	44.25	43.01
12/14/2006	46.33	60.27	72.73	47.13	40.94	33.12	51.23	28.37	29.54	37.61	37.92	50.83	52.49	44.05	45.18
1/1/2007	46.27	58.71	72.58	45.81	40.29	33.00	52.21	28.26	28.38	37.35	37.09	50.22	51.64	43.80	44.69
2/2/2007	46.52	60.64	73.42	46.67	41.58	33.85	52.03	28.53	28.55	37.54	37.31	51.20	52.61	44.97	45.39
3/7/2007	46.33	58.73	72.60	45.83	40.30	33.05	52.25	28.31	28.40	37.39	37.13	50.29	51.73	43.87	44.73
4/7/2007	46.28	58.71	72.53	45.80	40.24	33.00	52.23	28.29	28.63	37.36	37.11	50.26	51.70	43.83	44.71
5/7/2007	46.15	59.72	72.83	46.18	40.29	32.76	51.28	27.89	28.05	36.93	36.88	51.58	52.50	43.85	44.78
6/1/2007	46.33	58.78	72.58	45.85	40.28	33.09	52.28	28.37	28.40	37.42	37.14	50.29	51.79	43.88	44.75
7/1/2007	46.03	59.65	72.13	44.48	40.15	32.59	50.66	27.07	28.16	36.31	36.12	50.08	51.84	43.65	44.21
8/7/2007	45.20	58.66	72.47	45.91	41.45	33.88	51.21	28.47	27.85	37.21	36.96	50.24	51.74	44.99	44.73
9/7/2007	45.43	59.17	72.72	45.03	38.59	32.69		28.07	28.26	36.51	36.32	50.13	50.84	44.15	43.69
10/7/2007	44.64	57.97	71.46	45.08	41.24	33.95	50.89	29.28	29.28	36.42	36.13	49.93	51.53	45.13	44.50
11/7/2007	45.57	59.95	72.78	45.09	38.78	33.36	50.55	28.23	28.56	36.55	36.33	50.19	51.89	44.53	44.45
12/7/2007	45.45	59.83	72.68	45.06	38.64	37.79	63.27+	28.11	28.36	36.45	36.27	50.19	51.69	43.95	44.19
1/8/2008	45.83	59.57	71.43	45.88	40.89	33.19	50.83	28.47	28.96	38.51	38.82	50.18	50.69		44.87
2/1/2008	45.71	59.27	72.00	47.00	41.66	33.95	51.09	29.40	29.42	38.64	38.51	50.19	51.70	45.16	45.26
3/8/2008	46.73	60.77	71.93	46.08	41.09		51.63	28.87	29.36	39.01	38.82	49.98	51.29		46.30
4/8/2008	45.83	59.47	71.83	45.78	40.89	33.19	50.53	28.77	28.96	38.71	38.22	50.18	51.79	44.65	44.91
5/8/2008	46.03	59.77	72.23	45.88	40.89	33.29	50.73	28.87	29.06	38.61	38.52	50.38	51.19		45.03
6/8/2008	46.66	60.42	73.64	45.87	41.57	34.09	52.47	28.82	28.84	38.77	38.77	51.58	52.96	45.59	45.72

APPENDIX II-C

APPEN

CALCULATED BY: __GRI/BSP_ CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	A-1	A-4	A-11	A-12	A-13	A-14	A-21	PP-2A	PP-2B	PP-5A	PP-5B	PP-6A	PP-6B	PP-8	Mean GWE
Monitored	Α-1	A-4	A-11	A-12	A-13			vation (ft-		III-JA	11-20	11-0A	11-00	11-0	(ff-AMSL)
7/8/2008	45.33	60.37	73.83	45.18	41.49	34.69	52.43	28.37	28.46	38.51	38.27	51.38	52.79	45.95	45.50
8/8/2008	52.02+	59.63	73.33	45.15	40.79	33.68	52.13	27.28	28.84	37.77	37.67	51.08	46.55	45.07	44.54
9/8/2008	45.63	58.99	72.74	45.17	40.80	34.26	51.69	28.08	28.36	37.92	37.78	51.40	52.10	45.08	45.00
10/8/2008	45.50	58.72	72.74	44.79	41.49	34.08	51.45	28.38	28.61	38.00	37.84	50.44	51.96	45.00	44.90
11/8/2008	45.50	58.67	72.30	45.59	41.38	33.95	51.34	28.54	28.54	38.37	38.34	50.35	51.88	44.77	44.97
12/8/2008	45.60	59.07	72.33	46.07	41.58	34.08	51.21	28.66	28.69	38.71	38.61	50.27	51.88	44.91	45.12
1/26/2009	45.63	59.16	72.21	46.34	41.52	33.72	51.22	28.35	28.37	38.65	38.54	50.28	51.81	44.83	45.05
2/17/2009	45.67	59.30	72.13	45.84	41.56	33.94	51.20	28.25	28.39	38.76	38.66	50.26	51.74	44.85	45.04
3/27/2009	45.64	59.42	72.15	46.20	41.58	33.98	51.11	28.71	28.72	38.82	38.73	50.19	51.71	45.07	45.15
4/28/2009	45.99	60.05	74.88	46.49	41.68	33.97	51.32	28.75	28.77	38.93	38.83	50.47	51.94	45.18	45.52
5/22/2009	46.29	60.41	73.37	47.22	41.67	33.99	51.67	28.94	28.55	38.92	38.81	50.76	52.19	45.22	45.57
6/25/2009	46.18	60.33	73.48	47.07	41.62	34.13	51.87	28.66	28.46	38.75	38.66	50.92	52.36	45.14	45.55
7/1/2009	45.66	59.36	73.00	45.80	40.50	33.61	51.76	28.05	27.83	37.83	37.76	50.72	52.20	44.80	44.92
8/1/2009	45.62	59.16	72.78	46.25	41.40	34.35	51.56	28.74	28.76	38.58	38.09	50.56	52.03	45.15	45.22
9/24/2009	45.65	59.27	72.89	46.47	41.47	33.71	51.52	28.33	28.08	38.28	38.18	50.48	51.96	44.99	45.09
10/29/2009	46.15	60.14	73.32	48.05	41.98	35.02	51.57	29.24	30.23	39.37	38.86	50.59	52.02	45.98	45.89
11/25/2009	46.71	60.94	73.99	48.65	42.12	34.56	52.16	29.98	30.10	39.20	39.10	51.13	52.51	46.31	46.25
12/30/2009	47.17	61.34	74.50	48.36	41.93	34.02	52.67	29.24	29.26	39.01	38.90	51.77	53.11	46.36	46.26
1/28/2010	46.99	61.21	74.52	48.11	41.89	34.02	52.82	29.03	29.04	39.10	38.98	51.74	53.16	46.39	46.21
3/1/2010	47.40	61.75	75.28	48.19	42.12	34.23	52.99	29.63	29.65	39.21	39.10			47.24	45.57
4/8/2010	47.58	61.68	75.63	47.83	41.86	34.00	53.35	28.69	28.71	39.09	38.98	52.29	53.69	46.55	46.42
5/28/2010	46.53	60.27	74.66	46.75	41.19	33.68	52.36	28.51	28.18	38.76	38.66	51.22	52.65	45.57	45.64
6/30/2010	45.78	59.32	73.91	45.25	40.17	33.74	51.98	26.58	27.59	38.32	38.23	50.78	52.28	45.18	44.94
7/28/2010	45.57	59.09	73.72	45.06	41.01	34.94	52.11	27.85	27.88	38.48	38.38	50.65	52.13	45.27	45.15
8/16/2010	45.61	59.14	73.71	45.47	41.50	34.41	52.29	28.96	28.64	38.70	38.59	50.66	52.16	45.57	45.39
9/23/2010	45.08	58.60	72.95	44.74	40.40	33.23	51.90	27.79	27.59	37.81	37.78	50.45	51.97	45.14	44.67
10/21/2010	45.74	59.26	73.53	47.90	41.69	33.67	51.99	28.77	28.39	38.72	38.72	50.62	52.08	45.60	45.48
11/22/2010	45.77	59.22	73.19	47.55	41.60	33.64	51.82	28.54	28.47	39.24	38.74	51.31	51.24	45.32	45.40
12/16/2010	45.83	59.38	73.10	47.68	41.74	33.69	51.64	29.08	29.01	38.89	38.78	50.46	51.94	45.40	45.47
1/6/2011	45.78	59.33	72.85	46.51	41.66	33.61	51.55	28.21	28.37	38.88	38.77	50.41	51.91	45.24	45.22
2/7/2011	45.91	59.77	73.01	47.84	41.85	33.82	51.45	28.96	29.17	39.02	38.91	50.42	51.89	45.77	45.56
3/3/2011	45.78	59.68	72.81	47.64	41.69	33.68	51.39	28.73	28.75	38.90	38.77	50.38	51.87	45.50	45.40
4/7/2011	46.23	60.39	73.73	47.58	41.79	33.78	51.85	28.59	28.61	39.01	38.90	50.79	52.21	45.74	45.66
5/3/2011	46.29	60.44	73.99	47.60	41.69	33.81	52.11	28.50	28.56	39.06	38.99	50.96	52.38	45.75	45.72
6/24/2011	45.48	59.09	73.15	44.97	40.58	33.03	51.76	27.61	27.62	38.56	38.46	50.55	52.08	45.14	44.86
7/25/2011	45.00	58.61	72.78	44.57	40.22	30.77	51.74	27.67	27.68	38.34	38.25	50.38	51.90	45.00	44.49
8/15/2011	44.93	58.38	72.49	44.61	41.29	31.06	51.57	28.10	28.29	38.69	38.57	50.28	51.80	45.63	44.69
9/26/2011	46.64	60.31	74.21	48.03	42.09	35.78	52.40	29.53	29.23	39.09	39.03	51.14	52.52	46.47	46.18
10/27/2011	46.38	60.10	74.02	48.12	41.84	35.56	52.28	28.43	28.46	39.02	38.93	51.13	52.55	45.75	45.90
11/18/2011	46.24	60.05	73.75	48.01	41.80	35.63	51.99	29.22	28.73	37.77	37.51	50.92	52.38	45.75	45.70
12/20/2011	46.74	60.77	74.34	48.27	41.88	35.59	52.35	28.57	28.57	37.37	37.07	51.29	52.67	45.70	45.80
1/16/2012	56.61+	60.62	74.26	48.24	41.90	35.67	52.32	27.72	28.73	37.61	37.34	52.27	52.74	45.70	45.78
2/13/2012	46.56	60.64	74.23	48.15	41.89	35.63	52.15	28.32	28.33	37.71	37.46	51.14	52.56	45.61	45.74
3/5/2012	46.65	60.82	74.24	48.31	41.95	35.74	52.02	29.06	29.09	38.57	38.42	51.09	52.46	45.85	46.02

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	A-1	A-4	A-11	A-12	A-13	A-14	A-21	PP-2A	PP-2B	PP-5A	PP-5B	PP-6A	PP-6B	PP-8	Mean GWE
Monitored						Ground	water Ele	vation (ft-	AMSL)						(ff-AMSL)
4/18/2012	46.14	59.77	73.71	47.22	41.21	34.91	51.90	27.95	27.95	38.24	38.11	50.86	52.33	45.07	45.38
5/7/2012	46.03	59.61	73.51	46.54	41.55	35.43	51.74	28.06	28.07	38.39	38.25	50.71	52.17	45.16	45.37
6/11/2012	45.59	59.00	73.11	45.28	41.27	35.46	51.62	27.85	27.88	38.02	37.91	50.52	52.02	45.07	45.04
7/27/2012	45.07	58.47	72.55	44.67	41.35	35.47	51.38	27.81	27.82	38.02	37.90	50.24	51.75	46.18	44.91
8/13/2012	44.87	58.21	72.30	44.62	41.37	35.49	52.40	27.68	27.71	38.07	37.95	50.21	51.49	45.95	44.88
9/21/2012	44.72	57.92	71.94	44.74	41.48	35.53	51.33	28.07	28.10	38.18	38.05	50.11	51.66	45.30	44.80
10/4/2012	44.55	57.76	71.77	44.79	41.29	35.30	51.25	27.71	27.75	38.01	37.90	50.07	51.64	44.96	44.63
11/15/2012	45.16	58.09	71.78	45.07	41.73	35.66	51.17	28.32	28.34	38.29	38.13	50.10	51.62	44.95	44.89
12/12/2012	45.11	57.92	71.29	44.71	41.62	35.21	51.03	28.33	28.39	38.29	38.16	50.00	51.57	45.03	44.76
1/29/2013	45.51	58.54	71.74	45.34	41.86	35.61	51.15	28.25	28.32	38.41	38.26	50.16	51.68	45.20	45.00
2/11/2013	45.67	58.85	71.99	46.35	42.02	35.71	51.30	28.57	28.62	38.59	38.44	50.29	51.78	45.27	45.25
3/21/2013	46.02	59.52	75.43	45.94	41.87	35.62	51.42	28.29	28.37	38.48	38.33	50.44	51.92	45.19	45.49
4/8/2013	45.95	59.53	72.45	45.44	41.85	35.58	51.47	28.16	28.23	38.49	38.36	50.52	51.99	45.23	45.23
5/14/2013	45.95	59.63	72.67	45.05	41.86	35.72	51.50	28.41	28.47	38.50	38.35	50.56	52.03	45.13	45.27
6/14/2013	46.06	59.98	73.07	47.23	41.93	35.78	51.47	29.18	29.24	38.48	38.34	50.59	52.03	45.38	45.63
7/9/2013	45.98	59.78	73.09	46.42	41.76	35.68	51.72	28.06	28.14	38.31	38.20	50.72	52.17	45.30	45.38
7/29/2013	45.91	59.51	73.09	46.46	41.39	35.48	51.85	27.71	27.77	37.99	37.89	50.80	52.22	45.12	45.23
8/15/2013	45.67	58.05	72.71	44.62	41.53	35.56	51.80	27.86	27.94	38.11	37.98	50.69	52.18	45.10	44.99
9/11/2013	45.21	58.48	72.28	44.26	40.87	32.40	51.60	27.32	27.37	37.64	37.55	50.47	51.99	44.96	44.46
10/25/2013	45.52	58.72	72.43	45.51	41.72	35.57	51.58	28.05	28.12	38.22	38.08	50.47	51.94	45.09	45.07
11/7/2013	45.63	58.70	72.34	45.47	41.54	35.28	51.53	28.09	28.16	38.27	38.14	50.46	51.91	45.00	45.04
12/13/2013	45.91	59.27	72.54	47.65	42.11	35.78	51.52	28.92	28.99	38.54	38.39	50.53	51.99	45.48	45.54
1/17/2014	46.37	60.34	73.21	48.26	42.10	35.71	51.90	28.87	28.93	38.66	38.51	50.93	52.33	45.91	45.86
2/11/2014	46.41	60.38	73.22	47.80	42.01	35.62	52.04	28.63	28.71	38.56	38.42	51.09	52.49	45.80	45.80
3/24/2014	44.18	58.28	73.80	45.31	39.50	33.14	52.39	26.01	26.09	36.10	35.98	51.46	52.85	45.90	44.36
4/25/2014	47.04	61.01	74.30	47.89	41.99	35.67	52.81	28.47	28.54	38.62	38.48	51.86	53.27	45.77	46.12
5/15/2014	47.24	60.99	74.50	47.83	41.54	35.64	53.01	28.35	28.40	38.59	38.45	52.05	53.48	45.85	46.14
6/24/2014	46.53	60.09	74.21	47.12	41.39	35.49	52.51	28.06	28.11	38.25	38.13	51.39	52.83	45.45	45.68
7/9/2014	46.13	59.55	73.81	46.29	41.18	35.15	52.26	28.01	28.07	37.96	37.85	51.13	52.60	45.46	45.39
8/13/2014	46.20	59.37	73.60	47.52	42.03	36.13	52.05	29.87	29.95	38.40	38.26	50.93	52.35	45.88	45.90
9/22/2014	45.56	58.78	72.87	44.94	41.14	35.16	51.63	27.63	27.67	37.80	37.69	50.55	52.02	44.94	44.88
10/27/2014	45.53	58.60	72.63	45.03	41.61	35.59	51.57	28.08	28.14	38.17	38.02	50.46	51.97	44.97	45.03
11/14/2014	45.50	58.46	72.36	44.88	41.51	35.41	51.37	27.98	28.04	38.17	38.02	50.36	51.82	44.88	44.91
12/17/2014	45.80	59.05	72.74	47.54	42.06	35.68	51.34	28.70	28.76	38.47	38.34	50.38	51.86	45.25	45.43
1/15/2015	45.98	59.53	72.85	47.99	42.15	35.72	51.52	28.78	28.85	38.59	38.45	50.54	52.00	45.50	45.60
2/5/2015	46.11	60.00	72.97	47.99	42.08	35.62	51.46	28.48	28.55	38.50	38.37	50.59	51.98	45.53	45.59
3/16/2015	46.46	60.65	73.58	48.66	42.25	35.78	51.97	29.19	29.26	38.82	38.69	51.02	52.41	46.12	46.06
4/28/2015	46.62	60.66	73.75	47.72	42.04	35.72	52.16	28.47	28.51	38.66	38.52	51.25	52.63	45.61	45.88
5/29/2015	46.13	59.68	73.25	45.93	41.51	35.57	52.00	27.95	28.01	38.41	38.27	50.98	52.41	45.22	45.38
6/22/2015	46.28	59.91	73.50	47.77	42.03	35.83	51.93	29.52	29.59	38.74	38.59	50.95	52.35	45.53	45.89
7/30/2015	46.05	59.51	73.30	47.24	41.17	35.14	52.16	27.81	27.87	38.07	37.94	51.04	52.48	51.19	45.78
8/17/2015	45.64	58.92	72.85	45.22	40.90	34.91	51.92	27.55	27.61	37.74	37.60	50.79	52.26	45.05	44.93
9/16/2015	45.12	58.26	72.29	44.86	40.61	34.37	51.65	27.37	27.41	37.30	37.18	50.48	51.99	44.89	44.56
10/8/2015	45.55	57.76	72.79	47.56	41.95	35.69	51.51	28.51	28.58	38.47	38.31	51.44	51.92	45.41	45.39

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	A-1	A-4	A-11	A-12	A-13	A-14	A-21	PP-2A	PP-2B	PP-5A	PP-5B	PP-6A	PP-6B	PP-8	Mean GWE
Monitored						Ground	water Ele	vation (ft-	AMSL)				•		(ff-AMSL)
11/9/2015	45.55	58.55	72.23	46.50	41.78	35.59	51.45	28.85	28.90	38.62	38.45	50.37	51.88	45.22	45.28
12/3/2015	45.81	58.99	72.42	48.09	42.24	35.69	51.31	29.35	29.41	38.54	38.58	50.37	51.83	45.65	45.59
1/6/2016	45.83	59.36	72.64	47.95	41.91	35.65	51.66	28.66	28.73	38.65	38.53	50.55	52.02	45.51	45.55
2/8/2016	46.42	60.51	73.48	49.39	42.27	35.75	52.01	28.96	29.05	38.97	38.83	50.65	52.34	46.46	46.08
3/18/2016	46.36	60.33	73.36	47.66	41.56	35.59	52.28	28.52	28.57	38.67	38.53	51.22	52.64	45.88	45.80
4/25/2016	44.05	59.64	72.99	45.14	41.21	34.99	52.06	28.32	28.39	38.46	38.31	50.99	52.42	45.38	45.17
5/31/2016	46.17	60.06	73.48	47.89	41.92	35.72	51.90	29.09	29.17	38.67	38.53	50.93	52.32	45.80	45.83
6/13/2016	45.84	59.52	73.17	46.56	41.14	35.33	51.88	28.18	28.23	38.16	38.03	50.82	52.28	45.34	45.32
7/7/2016	45.79	59.22	73.01	46.39	41.45	35.47	51.77	28.33	28.39	38.49	38.34	50.70	52.16	45.40	45.35
8/8/2016	45.48	58.76	72.62	45.80	41.38	35.52	51.55	28.05	27.01	38.21	38.08	50.48	51.95	45.21	45.01
9/9/2016	44.95	59.21	72.10	44.56	40.75	34.57	51.37	27.63	27.69	37.64	37.52	50.28	51.80	44.72	44.63
10/28/2016	57.31+	58.35	82.02+	45.14	41.80	35.28	51.32	27.98	28.04	38.27	38.14	50.28	51.78	45.48	42.66
11/22/2016	45.18	58.00	71.50	44.61	41.01	34.55	51.15	27.86	27.93	38.26	37.81	50.12	51.67	45.14	44.63
12/6/2016	45.32	58.09	71.43	44.72	41.43	34.33	51.23	28.07	28.16	37.90	37.76	50.10	51.63	45.16	44.67
1/5/2017	45.42	58.27	71.41	46.17	42.09	35.56	51.08	28.85	28.92	38.58	38.43	51.12	51.62	45.52	45.22
2/20/2017	44.97	58.32	71.26	44.98	41.62	35.17	50.67	27.98	27.74	37.92	37.79	49.70	51.21	44.73	44.58
3/17/2017	45.45	58.36	71.09	45.41	41.97	35.52	50.97	28.69	29.47	38.48	38.34	50.04	51.57	45.28	45.05
4/13/2017	45.73	59.00	71.62	45.37	41.87	35.59	52.18	28.30	28.37	38.64	38.21	50.26	51.74	45.38	45.16
5/4/2017	45.70	58.95	71.73	45.06	41.63	35.48	51.29	28.04	28.10	38.37	38.26	50.32	51.83	45.26	45.00
6/15/2017	44.47	57.64	71.92	44.92	41.03	38.63	51.36	26.47	26.56	36.81	36.67	49.83	49.87	48.08	44.59
7/24/2017	43.98	56.87	81.26+	44.75	41.46	37.59	51.05	28.96	29.05	37.10	36.95	49.52	49.60	48.38	42.71
8/31/2017	43.86	56.82	71.27	44.68	41.16	38.35	51.27	26.49	26.60	36.83	36.69	49.30	49.76	48.41	44.39
9/22/2017	44.16	57.08	71.54	44.90	41.20	38.48	51.24	26.61	26.37	36.97	36.83	50.49	48.92	48.12	44.49
10/23/2017	43.93	56.67	71.07	44.54	40.92	37.66	51.06	26.50	26.55	36.93	36.77	49.52	49.60	47.94	44.26
11/30/2017	44.08	56.71	70.90	44.61	41.32	37.97	50.96	26.74	26.78	37.15	36.97	49.46	49.54	47.91	44.36
1/29/2018	44.01	56.55	70.38	44.74	41.54	37.31	50.83	26.79	26.85	37.33	37.16	49.37	49.46	48.22	44.32
2/12/2018	44.41	56.97	70.57	47.40	42.52	39.44	50.74	29.12	29.19	37.66	37.50	49.39	49.41	48.98	45.24
3/15/2018	44.65	57.71	71.52	45.98	41.95	39.04	51.20	26.89	26.95	37.38	37.22	49.72	49.75	48.56	44.89
4/6/2018	44.78	57.94	81.66+	45.84	41.91	39.02	51.34	26.89	26.95	37.40	36.94	49.86	49.87	48.66	42.88
5/31/2018	45.31	58.66	72.42	47.44	41.97	39.17	51.73	26.97	27.04	37.43	37.27	50.25	50.19	48.81	45.33
6/13/2018	45.61	59.14	72.90	47.73	42.12	39.35	52.05	27.45	27.52	37.60	37.44	50.53	50.44	49.16	45.65
7/6/2018	45.00	58.03	72.38	45.17	41.00	38.45	52.15	26.46	26.53	36.94	36.81	50.52	50.51	48.87	44.92
8/23/2018	45.47	58.70	73.07	47.35	41.80	38.97	52.48	27.63	27.70	37.38	37.23	50.85	50.74	49.65	45.64
9/11/2018	45.34	58.49	73.08	47.55	42.07	39.12	52.43	27.49	27.58	37.47	37.33	50.76	50.71	49.54	45.64
10/16/2018	45.54	59.22	73.58	48.40	42.14	39.30	52.72	27.34	27.41	37.58	37.33	50.98	50.94	49.58	45.86
11/14/2018	45.86	59.72	73.94	48.85	42.42	39.39	52.86	28.56	28.62	37.66	37.49	51.11	50.99	49.89	46.24
12/5/2018	46.06	59.94	74.13	48.53	42.16	39.24	53.16	27.36	27.43	37.58	37.42	51.50	51.49	49.99	46.14
1/17/2019	46.28	60.14	74.49	48.47	42.13	39.16	53.30	27.37	27.42	37.64	37.48	51.62	51.56	50.06	46.22
2/4/2019	46.50	60.31	74.81	48.63	42.24	39.24	53.59	27.42	27.55	37.74	37.52	51.85	51.72	50.13	46.38
3/4/2019	46.84	60.72	75.34	49.07	42.59	39.39	53.59	29.75	29.81	38.02	37.79	51.94	51.85	50.49	46.94
4/18/2019	46.38	60.18	75.27	48.48	42.25	39.29	51.33	27.07	27.20	37.62	37.44	51.54	51.48	49.62	46.08
5/13/2019	46.25	60.19	75.31	48.82	42.65	44.82+	52.89	29.56	29.63	37.90	37.73	51.22	51.12	50.24	47.19
6/4/2019	43.28	57.36	74.56	47.95	39.84	39.12	52.32	24.41	24.44	35.13	34.71	48.49	50.91	49.04	44.40
7/9/2019	45.54	58.98	74.77	48.03	41.69	38.91	52.54	26.78	28.57	37.01	37.28	50.68	50.64	49.21	45.76

APPENDIX II-C

CALCULATED BY: __GRI/BSP_ CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	A-1	A-4	A-11	A-12	A-13	A-14	A-21	PP-2A	PP-2B	PP-5A	PP-5B	PP-6A	PP-6B	PP-8	Mean GWE
Monitored						Ground	water Ele	vation (ft-	AMSL)						(ft-AMSL)
8/26/2019	44.79	57.87	73.76	47.14	41.10	38.10	52.20	26.91	26.97	37.15	36.85	50.36	50.42	48.44	45.15
9/16/2019	44.40	57.52	73.42	45.21	40.64	37.34	52.02	26.42	26.53	36.43	36.25	50.23	50.26	48.24	44.64
10/10/2019	43.52	56.56	70.36	43.74	39.88	36.42	51.23	25.78	25.85	35.53	35.38	49.45	49.52	47.50	43.62
11/14/2019	44.47	57.39	72.91	47.21	41.53	38.89	51.58	26.90	26.96	37.16	37.01	49.88	49.90	48.37	45.01
12/5/2019	44.61	57.57	72.73	47.68	41.84	39.05	51.32	27.12	27.20	37.39	37.16	49.82	49.84	48.53	45.13
1/21/2020	44.84	58.10	73.04	47.99	41.90	39.09	51.70	27.11	27.17	37.45	37.30	50.02	50.01	48.83	45.33
2/18/2020	45.26	58.95	73.57	48.43	42.09	39.19	51.94	27.45	27.53	37.66	37.49	50.32	50.25	49.36	45.68
3/16/2020	45.03	58.63	73.11	46.92	41.57	38.90	51.88	26.97	27.06	37.45	37.24	50.28	50.24	48.82	45.29
4/2/2020			73.56	48.02	41.91	39.18									50.67*
5/5/2020			73.92	48.65	42.24	39.33									51.04*
6/11/2020	45.22	58.76	73.53	46.83	41.19	38.24	52.11	26.96	27.03	37.20	37.12	50.46	50.40	48.62	45.26
7/9/2020	45.16	58.54	73.47	47.46	41.76	39.20	51.97	27.72	27.80	37.45	37.29	50.30	50.24	49.40	45.55
8/14/2020	45.30	58.84	73.88	48.46	42.18	39.38	52.16	29.02	29.08	37.71	37.55	50.39	50.31	50.02	46.02
9/11/2020	45.49	59.15	74.15	48.24	41.99	39.31	52.57	29.87	29.96	37.61	37.45	50.76	50.37	50.04	46.21
10/29/2020	45.51	59.26	74.41	48.85	42.83	39.65	52.72	28.98	28.92	37.84	37.67	50.84	50.77	50.61	46.35
11/24/2020	45.84	59.75	74.41	48.40	41.89	39.22	52.75	27.24	27.31	37.53	37.37	51.04	50.92	50.02	45.98
12/14/2020	46.12	60.00	74.62	48.45	41.99	39.25	53.08	27.48	27.55	37.73	37.57	51.32	51.20	50.47	46.20
Maximum	48.10	61.75	75.63	49.39	42.83	39.65	53.59	31.27	31.44	39.37	39.10	52.29	53.69	51.19	47.19
Minimum	43.28	56.55	67.62	43.33	38.43	30.77	49.03	24.41	24.44	35.13	34.71	48.49	46.55	43.65	42.66

Notes: 1. GWE, '---', and ft-AMSL means groundwater elevation, data not recorded, and feet above mean sea level, respectively.

^{2.} GWE data with '+' sign is identified high outlier and mean GWE data with '*' means the number of wells are less than 5.

Depressed groundwater conditions.

Elevated groundwater conditions.

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI/BSP_ CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

B. OTHER GWM WELLS

	B. OTHE																				
Date	A-2	A-3	A-5	A-6	A-7	A-8	A-9	A-10	A-15	A-16	A-17	A-18	A-19	A-20	A-22	A-22D	A-23	B-1	B-2	B-2R	B-3
Monitored		,			,					roundw											
1/5/2005		25.99	61.02	61.02	61.02	61.02	61.02	52.64	37.03	34.70	31.10	26.46	29.23	28.95				37.13	45.33		41.83
2/11/2005	32.09	25.16	61.27	61.27	61.27	61.27	61.27	49.67	37.17	35.29	30.60	28.60	29.21	28.50				37.30	45.15		41.91
3/24/2005		26.93	61.39	61.39	61.39	61.39	61.39	53.42	38.40	36.79	33.26	30.85	31.49	31.65				38.52	45.71		43.01
4/21/2005	26.35	25.00	61.33	61.33	61.33	61.33	61.33	52.55		34.34	30.90	28.38	28.87	28.78				37.54	44.98		41.88
5/24/2005		25.55	61.45	61.45	61.45	61.45	61.45	51.95	37.18	34.66	31.15	29.40	29.47	29.52				37.84	45.43		42.30
6/8/2005	32.18	25.84	61.02	61.02	61.02	61.02	61.02	52.82	37.02	36.00	31.20	29.46	29.62	29.93				36.96	45.19		41.75
7/1/2005	31.38	24.53	60.22	60.22	60.22	60.22	60.22	50.81	35.87	33.64	30.10	27.90	28.20	27.55				35.89	44.03		40.93
8/15/2005	31.41	24.56	59.57	59.57	59.57	59.57	59.57	51.86	36.51	34.04	30.94	28.46	28.60	29.40	27.89		31.64	35.94	43.86		40.73
9/7/2005	30.88	17.71	59.01	59.01	59.01	59.01	59.01	50.40	36.17	33.49	29.92	27.98	27.97	29.10	27.20			29.89	42.32		42.39
11/18/2005	31.63	25.28	59.01	59.01	59.01	59.01	59.01	52.48	37.12	34.59	31.53	29.25	29.22	29.18	27.63			30.79	44.00		41.54
12/27/2005	31.53	25.46	59.96	59.96	59.96	59.96	59.96	53.02	38.32	36.25	30.50	29.15	29.87	29.70	28.20			26.49	44.96		42.19
2/6/2006	32.79	26.01	59.72	59.72	59.72	59.72	59.72	53.78	38.08	37.14	32.16	30.16	30.56	31.27	28.84		33.11	38.29	44.28		42.93
3/24/2006	31.78	24.60	59.94	59.94	59.94	59.94	59.94	51.67	36.09	34.07	30.87	28.17	28.49	28.31	24.91		29.41	36.69	42.89		41.22
4/6/2006	31.61	24.91	59.72	59.72	59.72	59.72	59.72	51.77	30.70	33.93	30.80	28.33	28.72	28.65	24.93		29.27	36.55	43.56		41.15
5/4/2006	29.83	24.51	59.92	59.92	59.92	59.92	59.92	51.57	30.22	33.79	30.75	28.05	28.32	28.05	24.03		28.12	36.06	40.72		45.72+
6/12/2006	31.79	25.21	59.95	59.95	59.95	59.95	59.95	51.15	35.96	34.19	30.66	30.32	29.00	29.03	24.81		29.22	36.41	41.99		41.08
7/25/2006	31.53	24.81	59.17	59.17	59.17	59.17	59.17	51.16	35.82	33.59	30.60	30.25	28.82	28.70	24.93		29.12	36.24	41.91		40.95
8/28/2006	30.71	23.79	58.63	58.63	58.63	58.63	58.63	50.59	35.76	33.42	29.96	27.95	27.97	29.07	27.19		31.47	35.68	41.10		40.11
9/11/2006	31.58	23.51	56.97	56.97	56.97	56.97	56.97	41.97	35.60	33.89	30.59	29.86	28.62	28.75	25.22		30.12	36.95	43.68		41.35
10/31/2006	32.08	24.11	59.12	59.12	59.12	59.12	59.12	42.26	36.22	34.12	30.76	30.37	28.82	28.80	25.25		30.16	37.04	43.85		41.55
11/10/2006	32.73	25.51	60.37	60.37	60.37	60.37	60.37	43.04	37.89	37.29	20.30	36.25+	33.82+	29.38	24.11		30.09	37.58	41.10		42.06
12/14/2006	32.33	25.11	60.27	60.27	60.27	60.27	60.27	42.57	36.27	34.09	30.89	28.70	28.94	29.00	23.43		29.42	37.29	43.49		41.55
1/1/2007	32.18	24.21	58.71	58.71	58.71	58.71	58.71	42.27	35.80	34.04	30.80	30.28	28.60	28.82	27.79		33.09	36.69	43.74		41.35
2/2/2007	32.45	25.29	60.64	60.64	60.64	60.64	60.64	53.09	36.82	34.84	31.61	29.24	29.22	30.15	28.58		32.51	37.51	44.27		41.88
3/7/2007	32.23	24.22	58.73	58.73	58.73	58.73	58.73	42.37	35.84	34.09	30.85	30.31	28.64	28.85	27.80		33.12	36.74	43.79		41.37
4/7/2007	32.21	24.21	58.71	58.71	58.71	58.71	58.71	42.10	35.80	34.03	30.80	30.28	28.61	28.83	27.55		33.07	36.66	43.75		41.35
5/7/2007	31.78	24.61	59.72	59.72	59.72	59.72	59.72	51.29	35.67	33.43	30.50	28.00	28.52	28.38	27.72		31.76	36.27	43.95		46.35+
6/1/2007	32.25	24.25	58.78	58.78	58.78	58.78	58.78	42.15	35.84	34.11	30.84	30.32	28.65	28.90	27.60		33.14	36.72	43.78		41.39
7/1/2007	30.43	24.31	59.65	59.65	59.65	59.65	59.65	51.15	34.22	32.49	30.70	27.90	28.42	28.10	27.00		30.84	34.94	43.56		45.63+
8/7/2007	30.86	25.11	58.66	58.66	58.66	58.66	58.66	52.69	35.77	35.12	31.40	29.03	29.04	29.89	27.78		32.43	36.59			40.46
9/7/2007	31.83	24.81	59.17	59.17	59.17	59.17	59.17	51.16	35.82	33.59	30.60	30.25	28.82	28.70				36.24	41.91		40.95
10/7/2007	30.29	25.62	57.97	57.97	57.97	57.97	57.97	51.63	35.25	33.70	31.93	29.00	29.71	31.18	27.92		33.14	36.08			39.82
11/7/2007	31.79	25.21	59.95	59.95	59.95	59.95	59.95	51.15	35.96	34.99	30.66	29.60	29.00	29.03	24.81		29.22	36.41	41.99		41.08
12/7/2007	31.67	25.16	59.83	59.83	59.83	59.83	59.83	51.02	31.09	36.59	29.95	30.85	24.62	30.90	23.45		28.96	39.64	39.95		42.71
1/8/2008	32.63	25.41	59.57	59.57	59.57	59.57	59.57	52.97	35.82	36.29	32.20	29.10	29.22	30.30	25.83			38.14	38.05		42.25
2/1/2008	32.63	25.88	59.27	59.27	59.27	59.27	59.27	53.63	37.86	36.60	32.00	29.99	30.56	30.82	28.74		33.41	38.46	38.80		42.68
3/8/2008		25.11	60.77	60.77	60.77	60.77	60.77	52.87	36.62	36.99	30.70	28.90	29.12	29.00	25.13			38.04	38.05		41.65
4/8/2008	32.33	25.21	59.47	59.47	59.47	59.47	59.47	53.17	32.72	35.79	31.00	28.90	29.82	39.3+	25.33			37.64			41.15
5/8/2008	32.63	25.41	59.77	59.77	59.77	59.77	59.77	53.07	37.12	35.29	30.90	29.10	29.72	29.30	25.43			38.04	37.55		41.35
6/8/2008	32.59	25.64	60.42	60.42	60.42	60.42	60.42	52.69	36.80	34.43	31.53	29.33	29.55	30.60	28.20		32.51	37.22	37.99	41.71	41.22
3, 3, 2300			302	301.2	302	302	302	32.07	30.00	, ,	300	_,	_,	30.00			02.07	3	2		

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	A-2	A-3	A-5	A-6	A-7	A-8	A-9	A-10	A-15	A-16	A-17	A-18	A-19	A-20	A-22	A-22D	A-23	B-1	B-2	B-2R	B-3
Monitored									G	roundw	ater Ele	vation	(ft-AMS	L)							
7/8/2008	32.13	25.21	60.37	60.37	60.37	60.37	60.37	58.27+	35.82	34.59	31.20	29.20	29.52	29.10	26.10		32.51	36.64		40.39	41.45
8/8/2008	31.74	24.77	59.63	59.63	59.63	59.63	59.63	51.33	36.24	33.85	30.97	28.57	28.71	29.57	27.87		31.52	36.32	36.50	39.81	40.44
9/8/2008	31.19	25.22	58.99	58.99	58.99	58.99	58.99	51.54	36.45	34.31	31.40	29.05	29.04	30.05	27.88		32.17	36.52	37.89	40.27	40.32
10/8/2008	30.98	25.27	58.72	58.72	58.72	58.72	58.72	50.95	36.19	34.38	31.57	29.08	29.19	30.52	27.70		32.49	36.36	37.87	41.79	40.35
11/8/2008	31.32	25.21	58.67	58.67	58.67	58.67	58.67	52.17	36.74	34.62	31.39	25.14	29.05	30.02	28.04		29.08	36.88	37.71	41.60	40.80
12/8/2008	31.94	25.35	59.07	59.07	59.07	59.07	59.07	53.00	37.27	35.31	31.56	29.21	29.64	30.11	28.32		32.69	37.63	38.26	42.22	41.54
1/26/2009	31.90	25.06	59.16	59.16	59.16	59.16	59.16	52.35	36.89	34.69	31.31	28.88	29.04	29.81	28.25		32.39	37.63	37.88	41.84	41.37
2/17/2009	31.82	25.10	59.30	59.30	59.30	59.30	59.30	52.44	36.81	34.76	31.47	28.97	29.04	29.73	28.46		32.39	37.47	37.66	41.31	41.19
3/27/2009	31.69	25.29	59.42	59.42	59.42	59.42	59.42	52.12	36.58	34.70	31.46	29.24	29.28	30.28	28.11		32.52	37.03	38.29	42.05	41.04
4/28/2009	32.50	25.42	60.05	60.05	60.05	60.05	60.05	53.44	37.44	35.12	31.49	29.44	29.50	30.19	28.72		32.66	38.32	38.92	42.61	41.87
5/22/2009	32.52	25.32	60.41	60.41	60.41	60.41	60.41	53.27	37.22	34.95	31.36	29.26	29.28	29.96	28.61		32.43	38.25	38.90	42.62	41.67
6/25/2009	32.18	25.26	60.33	60.33	60.33	60.33	60.33	52.68	36.91	34.68	31.22	29.13	29.15	29.93	28.38		32.27	37.87	38.60	42.45	41.27
7/1/2009	31.17	24.30	59.36	59.36	59.36	59.36	59.36	51.07	35.82	33.72	30.49	28.38	28.36	29.33	27.56		31.44	36.28	36.81	40.19	40.28
8/1/2009	31.28	25.47	59.16	59.16	59.16	59.16	59.16	51.80	35.87	34.09	31.32	29.18	29.34	30.35	28.14		32.27	36.59	38.23	42.17	40.40
9/24/2009	31.80	24.70	59.27	59.27	59.27	59.27	59.27	51.92	36.56	34.49	31.22	28.65	28.68	29.31	28.23		31.96	37.41	37.93	41.64	40.94
10/29/2009	33.23	26.58	60.14	60.14	60.14	60.14	60.14	53.96	38.91	37.33	32.60	30.78	32.07	31.73	29.37		33.70	39.53	39.11	43.02	43.23
11/25/2009	33.59	26.57	60.94	60.94	60.94	60.94	60.94	54.29	38.85	37.48	32.50	30.67	31.87	31.62	29.59		33.67	39.50	39.56	43.27	43.28
12/30/2009	33.46	25.95	61.34	61.34	61.34	61.34	61.34	54.03	38.17	35.91	31.69	29.91	30.38	30.69	29.35		33.14	39,40	39.12	42.83	43.01
1/28/2010	32.93	25.84	61.21	61.21	61.21	61.21	61.21	53.66	37.33	35.97	31.90	29.64	30.44	30.51	29.03		32.86	38.27	39.01	42.64	41.83
3/1/2010	33.74	26.28	61.75	61.75	61.75	61.75	61.75	54.24	38.63	37.04	32.31	30.22	31.63	31.25	29.52		33.21	39.14	39.31	43.01	43.20
4/8/2010	33.10	25.64	61.68	61.68	61.68	61.68	61.68	53.56	37.12	34.99	31.39	29.44	29.42	30.26	29.02		32.57	38.54	39.00	42.50	41.97
5/28/2010	31.90	25.18	60.27	60.27	60.27	60.27	60.27	51.77	35.90	34.14	31.07	28.77	28.92	29.80	28.31		32.07	DRY	38.15	41.68	40.69
6/30/2010	30.82	24.38	59.32	59.32	59.32	59.32	59.32	50.66	35.12	33.39	30.29	28.03	28.14	29.36	27.17		31.38	38.67	37.76	41.18	39.74
7/28/2010	30.72	24.87	59.09	59.09	59.09	59.09	59.09	51.06	35.54	33.71	30.85	28.39	28.65	29.62	27.51		31.76	38.85	38.27	41.95	39.75
8/16/2010	31.02	25.38	59.14	59.14	59.14	59.14	59.14	49.45	36.14	34.73	31.15	29.30	29.17	30.07	27.62		32.72	37.01	38.44	42.39	40.35
9/23/2010	30.24	18.26	58.60	58.60	58.60	58.60	58.60	50.41	35.60	33.59	29.47	28.06	28.07	29.20	26.67		31.60	36.38	36.98	40.31	39.69
10/21/2010	32.03	25.20	59.26	59.26	59.26	59.26	59.26	52.63	36.89	35.13	31.32	29.07	29.50	29.75	28.11		32.61	37.83	38.58	42.22	41.85
11/22/2010	32.17	25.28	59.22	59.22	59.22	59.22	59.22	52.60	36.69	34.87	31.30	29.08	29.36	29.84	28.32		32.64	37.80	38.75	42.28	41.65
12/16/2010	32.37	25.62	59.38	59.38	59.38	59.38	59.38	53.15	37.05	35.54	31.58	29.52	29.89	30.37	28.75		32.86	25.95	38.73	42.46	41.83
1/6/2011	32.10	25.13	59.33	59.33	59.33	59.33	59.33	52.38	36.55	34.92	31.37	29.02	29.19	29.66	28.63		32.56	37.49	38.54	41.98	41.38
2/7/2011	32.65	25.76	59.77	59.77	59.77	59.77	59.77	53.56	37.64	36.33	31.85	29.80	30.62	30.58	28.93		33.19	38.49	39.03	42.80	42.45
3/3/2011	32.43	25.46	59.68	59.68	59.68	59.68	59.68	53.34	37.04	35.70	31.48	29.28	29.98	30.11	28.82		32.85	38.00	38.70	42.39	41.71
4/7/2011	32.70	25.44	60.39	60.39	60.39	60.39	60.39	53.48	36.87	35.03	31.44	29.23	29.60	30.01	28.96		32.69	38.11	39.03	42.60	41.80
5/3/2011	32.66	25.38	60.44	60.44	60.44	60.44	60.44	53.28	36.62	34.79	31.29	29.29	29.24	29.93	28.81		32.66	37.91	39.02	42.47	41.53
6/24/2011	30.89	24.25	59.09	59.09	59.09	59.09	59.09	50.85	35.21	33.54	30.46	28.10	28.13	29.29	27.38		31.40	36.00	38.35	41.48	40.08
7/25/2011	30.33	24.28	58.61	58.61	58.61	58.61	58.61	50.65	34.86	33.15	30.05	28.19	28.14	29.29	26.96		31.20	36.09	37.66	40.60	39.51
8/15/2011	30.16	24.77	58.38	58.38	58.38	58.38	58.38	51.37	34.97	33.12	30.48	28.60	28.68	30.04	27.26		31.92	36.11	38.05	41.64	39.43
9/26/2011	33.36	25.93	60.31	60.31	60.31	60.31	60.31	53.91	37.43	36.02	31.49	29.97	30.95	30.66	29.20		33.44	39.04	39.17	42.86	42.22
10/27/2011	32.65	25.29	60.10	60.10	60.10	60.10	60.10	52.68	36.23	34.94	31.15	29.11	29.34	29.94	28.81		32.68	37.54	38.75	42.11	41.36
11/18/2011	32.58	25.49	60.05	60.05	60.05	60.05	60.05	53.37	36.29	35.05	31.65	29.20	30.01	30.21	28.90		32.98	37.59	38.56	42.24	41.32
12/20/2011	33.12	25.43	60.77	60.77	60.77	60.77	60.77	53.49	37.02	35.19	31.16	29.23	29.54	29.99	29.16		32.82	38.55	38.90	42.55	42.08
1/16/2012	32.98	25.63	60.62	60.62	60.62	60.62	60.62	53.57	37.01	35.68	31.31	29.32	30.08	30.19	29.22		32.94	38.40	38.75	42.50	41.96
2/13/2012	32.68	25.29	60.64	60.64	60.64	60.64	60.64	53.29	36.48	35.10	31.21	28.96	29.47	29.80	28.95		32.62	37.73	38.60	42.18	41.46
3/5/2012	33.02	25.87	60.82	60.82	60.82	60.82	60.82	53.69	37.30	36.17	31.48	29.76	30.62	30.64	28.95		33.24	38.51	38.82	42.63	42.20
3/3/2012	JJ.UZ	20.07	00.02	00.02	00.02	00.02	00.02	55.67	07.00	50.17	01.40	27.70	00.02	00.04	20.73		JU.Z4	00.01	50.02	72.00	72.20

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	A-2	A-3	A-5	A-6	A-7	A-8	A-9	A-10	A-15	A-16	A-17	A-18	A-19	A-20	A-22	A-22D	A-23	B-1	B-2	B-2R	B-3
Monitored									G	roundw	ater Ele	vation	(ft-AMS								
4/18/2012	31.90	24.71	59.77	59.77	59.77	59.77	59.77	51.86	35.79	34.33	30.80	28.49	28.53	29.40	28.06		31.78	36.77	37.36	40.60	40.82
5/7/2012	31.83	24.84	59.61	59.61	59.61	59.61	59.61	51.92	35.94	34.42	30.82	28.70	28.65	29.52	28.06		31.93	36.82	38.25	41.84	40.64
6/11/2012	31.19	24.64	59.00	59.00	59.00	59.00	59.00	51.04	35.27	33.88	30.51	28.46	28.44	29.39	27.59		31.66	36.52	37.50	40.92	40.12
7/27/2012	30.50	24.61	58.47	58.47	58.47	58.47	58.47	50.76	35.13	33.75	30.57	28.41	28.47	29.45	27.45		31.53	36.24	37.42	41.18	39.60
8/13/2012	30.27	24.59	58.21	58.21	58.21	58.21	58.21	50.36	35.17	33.68	30.58	28.17	28.52	29.53	27.11		31.57	36.29	37.68	41.42	39.31
9/21/2012	30.39	24.85	57.92	57.92	57.92	57.92	57.92	50.20	35.33	33.96	30.65	28.66	28.61	29.55	27.66		31.88		43.10	36.17	39.47
10/4/2012	30.27	24.38	57.76	57.76	57.76	57.76	57.76	49.93	36.03	33.96	30.69	28.20	28.25	29.28	27.34		31.56	36.28	37.53	41.24	39.56
11/15/2012	31.80	25.13	58.09	58.09	58.09	58.09	58.09	52.23	36.71	34.71	30.95	28.97	29.22	29.65	28.16		32.46	37.69	38.32	42.11	40.98
12/12/2012	31.56	24.81	57.92	57.92	57.92	57.92	57.92	52.03	36.32	34.53	31.20	28.84	29.71	29.35	28.17		32.24	37.12	38.08	41.82	40.76
1/29/2013	32.16	25.05	58.54	58.54	58.54	58.54	58.54	52.92	36.77	34.96	31.14	29.00	29.33	29.64	28.75		32.67	37.92	38.54	42.22	41.30
2/11/2013	32.44	25.31	58.85	58.85	58.85	58.85	58.85	53.65	37.03	35.43	31.70	29.25	30.13	29.86	28.74		33.19	38.28	38.98	42.79	41.57
3/21/2013	32.56	25.16	59.52	59.52	59.52	59.52	59.52	53.65	37.03	35.10	31.11	29.05	29.50	29.65	28.96		32.68	38.30	38.79	42.48	41.64
4/8/2013	32.38	25.03	59.53	59.53	59.53	59.53	59.53	53.28	36.73	34.89	31.01	28.86	29.20	29.52	28.64		32.23	37.98	38.65	42.21	41.35
5/14/2013	32.35	25.21	59.63	59.63	59.63	59.63	59.63	53.51	36.62	34.97	31.03	29.17	29.73	29.72	28.63		32.37	37.54	38.73	42.38	41.08
6/14/2013	32.60	25.84	59.98	59.98	59.98	59.98	59.98	53.43	37.62	35.46	31.13	29.92	30.14	30.55	28.60		32.97	38.60	38.88	42.70	41.76
7/9/2013	32.26	24.91	59.78	59.78	59.78	59.78	59.78	52.81	36.72	34.59	30.67	28.75	29.21	29.25	28.22		31.88	37.88	38.47	42.16	40.85
7/29/2013	31.85	24.53	59.51	59.51	59.51	59.51	59.51	51.81	36.36	34.04	27.90	28.29	28.32	29.40	27.76		31.35	37.51	37.78	41.15	40.66
8/15/2013	31.33	24.62	58.05	58.05	58.05	58.05	58.05	51.39	36.03	33.87	30.40	28.37	28.51	29.63	27.63		31.39	36.82	37.94	41.56	40.18
9/11/2013	30.47	23.84	58.48	58.48	58.48	58.48	58.48	50.57	33.06	33.46	30.18	27.80	27.79	29.01	26.73		28.64	36.12	36.73	39.98	39.43
10/25/2013	31.77	24.85	58.72	58.72	58.72	58.72	58.72	52.33	36.94	34.74	30.71	28.66	29.18	29.45	28.12		32.19	37.87	38.07	41.91	41.04
11/7/2013	31.62	24.84	58.70	58.70	58.70	58.70	58.70	51.82	36.59	34.67	28.61	30.96	28.92	29.54	28.24		32.11	37.52	37.79	41.30	40.92
12/13/2013	32.84	25.59	59.27	59.27	59.27	59.27	59.27	53.71	37.96	36.23	31.45	29.65	30.80	33.38	28.88		33.05	38.85	38.83	42.79	42.15
1/17/2014	33.05	25.57	60.34	60.34	60.34	60.34	60.34	53.89	37.65	36.03	31.44	29.59	30.70	30.28	28.99		32.88	38.78	38.99	42.85	42.09
2/11/2014	32.85	25.41	60.38	60.38	60.38	60.38	60.38	53.66	37.40	35.46	31.19	29.32	30.00	29.97	28.90		32.70	38.61	38.68	42.56	41.91
3/24/2014	30.32	22.86	58.28	58.28	58.28	58.28	58.28	51.21	34.62	33.12	28.64	26.64	27.56	27.47	26.33		30.10	38.45	38.64	39.81	41.68
4/25/2014	32.97	25.36	61.01	61.01	61.01	61.01	61.01	53.66	37.09	35.03	30.95	29.20	29.47	29.93	28.87		32.35	38.53	38.67	42.29	41.77
5/15/2014	32.92	25.20	60.99	60.99	60.99	60.99	60.99	53.31	36.89	34.72	30.74	29.05	29.06	29.79	28.73		32.10	38.55	38.52	41.99	41.57
6/24/2014	31.99	24.87	60.09	60.09	60.09	60.09	60.09	51.98	36.30	34.19	30.36	28.67	28.60	29.56	28.24		31.59	37.10	37.90	41.30	40.47
7/9/2014	31.38	24.68	59.55	59.55	59.55	59.55	59.55	51.01	35.86	33.79	30.34	28.53	28.53	29.72	27.51		31.25	36.49	37.62	40.89	39.88
8/13/2014	31.89	26.33	59.37	59.37	59.37	59.37	59.37	52.73	36.77	36.19	31.84	30.34	30.46	31.33	28.51		33.65	37.57	38.17	42.23	40.75
9/22/2014	30.57	24.11	58.78	58.78	58.78	58.78	58.78	50.61	35.82	33.85	30.13	28.16	28.08	29.19	26.75		31.29	36.30	36.90	40.21	38.81
10/27/2014	31.05	24.89	58.60	58.60	58.60	58.60	58.60	51.55	36.36	34.59	30.51	28.65	28.71	29.51	27.82		31.88	36.82	37.98	41.76	40.50
11/14/2014	31.17	24.78	58.46	58.46	58.46	58.46	58.46	51.42	36.42	34.59	30.74	28.56	28.60	29.37	27.93		31.97	36.84	37.88	41.52	40.63
12/17/2014	32.27	25.44	59.05	59.05	59.05	59.05	59.05	53.17	37.11	35.88	31.40	29.36	30.16	30.43	28.49		32.70	37.96	38.74	42.61	41.14
1/15/2015	32.58	25.59	59.53	59.53	59.53	59.53	59.53	53.42	37.48	36.14	31.51	29.60	30.70	30.32	28.74		32.80	38.41	38.87	42.68	41.58
2/5/2015	32.57	25.33	60.00	60.00	60.00	60.00	60.00	53.36	37.22	35.61	31.25	29.28	30.22	29.98	28.73		32.59	38.49	38.87	42.76	41.73
3/16/2015	33.14	25.90	60.65	60.65	60.65	60.65	60.65	53.91	38.09	36.59	31.65	30.00	31.22	31.25	29.09		33.16	36.07	39.22	43.09	42.62
4/28/2015	32.78	25.30	60.66	60.66	60.66	60.66	60.66	53.49	37.15	35.16	30.88	29.20	29.61	29.91	28.81		32.49	38.59	38.81	42.51	41.91
5/29/2015	31.67	24.82	59.68	59.68	59.68	59.68	59.68	52.01	36.13	34.26	30.33	28.59	28.61	29.52	28.01		31.47	36.99	37.77	41.18	41.63
6/22/2015	32.26	26.13	59.91	59.91	59.91	59.91	59.91	53.33	37.15	35.68	31.46	30.33	30.42	30.58	28.65		33.44	37.77	38.81	42.74	40.98
7/30/2015	31.46	24.59	59.51	59.51	59.51	59.51	59.51	51.30	35.92	33.94	30.17	28.38	28.41	29.51	27.33		31.12	36.67	37.26	40.43	40.22
8/17/2015	30.67	24.20	58.92	58.92	58.92	58.92	58.92	50.67	35.47	33.58	29.99	28.09	28.14	29.39	26.66		30.85	36.06	37.16	40.38	39.60
9/16/2015	29.87	23.78	58.26	58.26	58.26	58.26	58.26	50.14	35.15	33.26	29.86	27.91	27.91	29.11	25.92		30.74	35.73	36.37	39.46	39.07
10/8/2015	31.58	25.18	57.76	57.76	57.76	57.76	57.76	52.76	36.97	35.41	30.82	29.13	29.77	29.84	27.87		32.60	37.42	39.56	42.10	40.36

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	A-2	A-3	A-5	A-6	A-7	A-8	A-9	A-10	A-15	A-16	A-17	A-18	A-19	A-20	A-22	A-22D	A-23	B-1	B-2	B-2R	B-3
Monitored									G	roundw	ater Ele	vation	(ft-AMSI	L)							
11/9/2015	31.77	24.98	58.55	58.55	58.55	58.55	58.55	52.12	36.51	34.98	30.71	29.31	29.53	29.66	28.11		32.08	37.35	38.04	41.77	40.78
12/3/2015	31.38	25.90	58.99	58.99	58.99	58.99	58.99	52.80	37.49	37.20	31.80	29.96	31.68	31.07	28.70		32.96	38.25	38.63	42.70	41.21
1/6/2016	31.55	25.24	59.36	59.36	59.36	59.36	59.36	52.31	37.25	35.43	30.89	29.39	29.73	29.80	28.69		32.31	38.40	38.46	42.30	42.04
2/8/2016	32.34	25.66	60.51	60.51	60.51	60.51	60.51	53.00	37.94	36.18	31.90	29.79	30.78	30.36	29.21		33.00	39.11	39.23	43.05	42.69
3/18/2016	31.56	25.21	60.33	60.33	60.33	60.33	60.33	52.27	36.81	35.03	30.73	29.16	29.35	29.80	28.78		32.17	37.61	38.45	42.06	41.54
4/25/2016	30.79	24.82	59.64	59.64	59.64	59.64	59.64	51.37	36.23	34.57	30.42	28.93	28.81	29.85	28.28		31.72	37.12	37.79	41.22	41.01
5/31/2016	31.54	25.83	60.06	60.06	60.06	60.06	60.06	52.40	36.93	35.08	31.00	29.82	29.76	30.53	28.67		32.69	37.83	38.79	42.53	41.33
6/13/2016	30.80	24.70	59.52	59.52	59.52	59.52	59.52	50.96	36.26	34.28	30.13	28.75	28.68	29.45	27.89		31.33	37.15	37.78	41.21	40.74
7/7/2016	30.79	25.17	59.22	59.22	59.22	59.22	59.22	51.26	36.17	34.34	30.21	29.03	28.89	29.77	28.16		32.06	36.99	38.38	42.08	40.41
8/8/2016	30.53	24.83	58.76	58.76	58.76	58.76	58.76	50.86	36.30	34.13	30.06	28.68	28.66	29.52	27.79		31.52	36.85	37.96	41.80	40.09
9/9/2016	29.41	24.17	59.21	59.21	59.21	59.21	59.21	49.55	35.57	33.52	29.96	28.17	28.25	29.26	26.93		30.85	36.18	36.83	40.07	39.46
10/28/2016	30.69	24.70	58.35	58.35	58.35	58.35	58.35	50.88	36.53	34.71	30.21	28.55	28.72	29.44	28.14		31.67	37.33	37.94	41.61	40.68
11/22/2016	30.09	24.55	58.00	58.00	58.00	58.00	58.00	50.33	36.16	34.50	30.18	28.38	28.43	29.42	27.91		31.63	36.70	36.86	40.35	40.65
12/6/2016	30.21	24.96	58.09	58.09	58.09	58.09	58.09	50.61	36.05	34.60	30.30	28.69	28.78	29.67	28.22		32.04	36.22	37.67	41.40	40.69
1/5/2017	31.24	25.58	58.27	58.27	58.27	58.27	58.27	52.39	37.24	36.29	31.69	29.56	30.96	30.44	28.64		33.10	37.55	38.40	42.42	41.09
2/20/2017	30.46	24.74	58.32	58.32	58.32	58.32	58.32	50.87	36.49	34.81	30.40	28.57	28.91	29.41	28.47		32.75	37.00	37.73	41.32	41.00
3/17/2017	30.98	25.39	58.36	58.36	58.36	58.36	58.36	52.29	36.88	35.72	31.22	29.30	30.29	30.28	28.62		32.63	37.64	38.36	42.30	41.19
4/13/2017	31.39	25.19	59.00	59.00	59.00	59.00	59.00	52.35	37.22	35.25	30.68	29.01	29.45	29.68	28.73		32.57	38.03	38.55	42.45	41.68
5/4/2017	31.02	24.84	58.95	58.95	58.95	58.95	58.95	51.69	36.45	34.76	30.29	28.64	28.59	29.41	28.38		31.76	37.80	38.29	41.54	41.17
6/15/2017	30.56	26.86	57.64	57.64	57.64	57.64	57.64	50.68	36.11	32.54	29.99	26.78	26.86	29.31	27.81		31.11	36.13	41.76	40.94	40.50
7/24/2017	29.73	28.65	56.87	56.87	56.87	56.87	56.87	50.42	35.55	32.14	31.69	28.58	28.10	31.77	27.82	29.18	32.58	35.16	41.75	41.32	39.69
8/31/2017	30.39	27.15	56.82	56.82	56.82	56.82	56.82	50.84	35.99	32.63	29.73	26.86	26.93	29.45	27.77	29.74	31.96	35.96	42.39	42.01	40.55
9/22/2017	30.61	27.05	57.08	57.08	57.08	57.08	57.08	50.49	36.22	32.84	30.02	26.88	27.04	29.39	27.97	29.85	31.43	36.19	41.78	41.23	40.37
10/23/2017	30.78	26.67	56.67	56.67	56.67	56.67	56.67	49.58	35.86	32.67	30.04	26.73	26.79	29.28	27.58	29.18	31.38	35.55	41.52	40.75	40.23
11/30/2017	30.48	27.21	56.71	56.71	56.71	56.71	56.71	50.49	36.37	33.14	30.39	26.99	26.94	29.52	28.35	29.82	31.89	36.32	42.08	41.56	40.73
1/29/2018	30.35	27.27	56.55	56.55	56.55	56.55	56.55	50.65	36.27	33.27	30.97	27.13	27.33	29.56	28.31	29.96	31.99	36.14	42.21	41.78	40.79
2/12/2018	32.37	29.03	56.97	56.97	56.97	56.97	56.97	52.70	39.17	35.73	32.30	29.27	30.36	32.22	29.34	30.97	33.76	39.07	42.89	42.86	42.93
3/15/2018	31.34	27.45	57.71	57.71	57.71	57.71	57.71	51.97	36.88	33.65	30.78	27.29	27.75	29.63	28.74	30.58	32.15	37.05	42.18	41.81	41.42
4/6/2018	31.39	27.47	57.94	57.94	57.94	57.94	57.94	52.09	36.91	33.55	30.66	27.28	27.67	29.59	28.77	30.64	32.15	36.97	41.85	41.28	41.49
5/31/2018	31.80	27.61	58.66	58.66	58.66	58.66	58.66	52.38	37.12	33.46	30.40	27.39	27.47	29.66	28.85	30.90	32.26	37.40	41.99	41.28	41.74
6/13/2018	32.20	28.10	59.14	59.14	59.14	59.14	59.14	52.80	37.25	33.96	31.00	27.96	28.69	30.19	29.03	31.21	32.64	37.80	42.62	42.04	41.89
7/6/2018	30.72	26.90	58.03	58.03	58.03	58.03	58.03	50.70	35.89	32.39	29.91	27.95	26.79	29.29	27.84	29.85	31.04	35.71	40.84	39.98	40.16
8/23/2018	31.57	28.20	58.70	58.70	58.70	58.70	58.70	52.47	36.98	33.56	30.76	28.04	28.09	30.45	28.79	30.87	33.21	36.52	41.34	40.81	41.07
9/11/2018	31.64	28.12	58.49	58.49	58.49	58.49	58.49	52.59	36.85	34.41	31.39	27.94	29.34	30.36	28.92	30.83	33.17	36.41	41.24	40.74	40.96
10/16/2018	32.10	28.01	59.22	59.22	59.22	59.22	59.22	52.67	37.27	34.05	30.73	27.56	28.38	30.29	28.95	31.04	32.91	37.12	41.67	41.19	41.49
11/14/2018	32.61	29.03	59.72	59.72	59.72	59.72	59.72	54.27	38.22	35.38	31.84	28.77	30.06	31.77	29.58	31.43	33.39	41.17	42.71	42.24	42.44
12/5/2018	32.29	28.10	59.94	59.94	59.94	59.94	59.94	52.97	37.25	34.11	30.87	27.69	28.52	30.19	29.34	31.22	32.84	37.62	42.42	41.79	41.98
1/17/2019	32.04	28.08	60.14	60.14	60.14	60.14	60.14	52.91	36.85	33.95	30.82	27.69	28.37	30.25	29.13	31.22	32.72	37.20	42.31	41.68	41.73
2/4/2019	35.15	28.16	60.31	60.31	60.31	60.31	60.31	52.95	37.23	34.16	31.13	27.89	28.47	30.35	29.31	31.29	32.78	37.44	42.47	41.82	41.99
3/4/2019	33.08	29.71	60.72	60.72	60.72	60.72	60.72	53.61	38.62	35.64	32.33	29.73	30.55	32.91	30.00	31.96	33.81	38.49	43.25	42.66	43.14
4/18/2019	31.75	28.13	60.18	60.18	60.18	60.18	60.18	52.80	36.62	33.56	30.60	27.64	27.64	30.17	28.99	31.06	32.40	36.57	41.88	41.24	41.43
5/13/2019	32.25	29.69	60.19	60.19	60.19	60.19	60.19	53.47	37.11	35.63	32.63	29.50	30.27	32.66	29.47	31.55	33.92	36.97	42.34	39.04	41.60
6/4/2019	29.17	27.37	57.36	57.36	57.36	57.36	57.36	51.34	35.72	33.13	30.08	26.70	26.84	29.29	28.20	28.54	32.17	36.11	41.05	40.30	40.74
7/9/2019	31.13	29.51	58.98	58.98	58.98	58.98	58.98	52.18	36.33	34.23	31.51	28.91	29.47	32.38	29.30	31.08	33.67	36.18	40.79	40.57	38.90
////201/	51.10	27.01	30.70	30.70	50.70	30.70	30.70	32.10	30.00	57.20	51.01	20.71	∠/,¬/	52.00	27.00	51.00	30.07	50.10	70.77	10.07	50.75

APPENDIX II-C

CALCULATED BY: __GRI/BSP_ CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	A-2	A-3	A-5	A-6	A-7	A-8	A-9	A-10	A-15	A-16	A-17	A-18	A-19	A-20	A-22	A-22D	A-23	B-1	B-2	B-2R	B-3
Monitored									G	roundw	ater Ele	evation	(ft-AMS	L)							
8/26/2019	30.15	27.66	57.87	57.87	57.87	57.87	57.87	49.93	35.47	32.56	29.98	27.29	27.35	29.92	27.96	29.80	32.25	35.49	39.77	39.05	40.12
9/16/2019	29.51	26.90	57.52	57.52	57.52	57.52	57.52	49.53	34.99	32.04	29.72	26.71	26.86	29.52	27.04	28.87	28.19	35.08	39.45	38.72	39.60
10/10/2019	28.44	26.00	56.56	56.56	56.56	56.56	56.56	48.88	34.15	31.30	29.04	26.00	26.05	28.89	26.10	28.23	30.54	34.34	38.45	37.84	38.72
11/14/2019	30.85	27.50	57.39	57.39	57.39	57.39	57.39	51.57	36.24	33.47	30.24	27.22	27.41	29.63	28.18	30.00	32.34	35.93	39.89	39.55	40.64
12/5/2019	31.89	27.83	57.57	57.57	57.57	57.57	57.57	52.17	36.42	34.44	30.99	27.48	28.54	30.11	28.63	30.40	32.66	36.20	40.23	39.93	40.93
1/21/2020	31.94	27.84	58.10	58.10	58.10	58.10	58.10	52.70	36.84	34.21	30.80	27.47	28.36	29.92	29.00	30.84	32.69	36.77	41.39	40.97	41.47
2/18/2020	32.47	28.14	58.95	58.95	58.95	58.95	58.95	53.01	37.66	34.56	31.02	27.98	28.65	30.26	29.33	31.24	32.93	37.60	42.28	41.68	42.19
3/16/2020	31.61	27.68	58.63	58.63	58.63	58.63	58.63	52.29	36.49	33.55	30.44	27.28	27.59	29.88	28.93	30.77	32.27	36.42	41.31	40.75	41.33
4/2/2020									36.97									36.80	41.97	41.38	41.70
5/5/2020									38.41									38.56	42.61	42.08	42.70
6/11/2020		27.68	58.76	58.76	58.76	58.76	58.76	51.81	36.00	32.90	29.97	27.31	27.23	29.80	28.51	30.54	31.99	35.81	40.67	39.66	40.62
7/9/2020	31.79	28.39	58.54	58.54	58.54	58.54	58.54	52.63	36.90	34.02	30.78	28.24	28.29	30.49	28.82	30.91	33.21	36.50	40.92	40.60	40.93
8/14/2020	33.26	29.20	58.84	58.84	58.84	58.84	58.84	52.73	38.07	35.84	31.87	29.15	30.06	32.07	29.34	31.46	33.57	37.85	41.97	41.76	41.61
9/11/2020	32.22	29.80	59.15	59.15	59.15	59.15	59.15	52.90	37.36	34.68	32.23	29.83	30.03	32.63	29.72	31.59	33.91	37.09	41.36	40.94	41.45
10/29/2020	32.28	28.75	59.26	59.26	59.26	59.26	59.26	52.77	37.21	35.92	32.69	28.66	30.35	31.56	29.40	31.21		37.08	41.76	41.69	42.84
11/24/2020	32.18	28.06	59.75	59.75	59.75	59.75	59.75	52.80	37.08	33.76	30.47	27.66	28.06	30.04	29.31	31.21	32.60	37.47	41.89	41.35	41.68
12/14/2020	32.32	28.25	60.00	60.00	60.00	60.00	60.00	53.02	37.19	33.92	30.79	27.93	28.28	30.25	29.44	31.34	32.84	37.64	42.43	41.75	42.14
Maximum	35.15	29.80	61.75	61.75	61.75	61.75	61.75	54.29	39.17	37.48	33.26	30.96	32.07	33.38	30.00	31.96	33.92	41.17	45.71	43.27	43.28
Minimum	26.35	17.71	56.55	56.55	56.55	56.55	56.55	41.97	30.22	31.30	20.30	25.14	24.62	27.47	23.43	28.23	28.12	25.95	36.37	36.17	38.72

Notes: 1. GWE, '---', and ft-AMSL means groundwater elevation, data not recorded, and feet above mean sea level, respectively.

^{2.} GWE data with '+' sign is identified as high outlier.

^{3. &}quot;DRY" or "Water Not Detected" observation for A-6 and B-1 GWM wells has been replaced with the well bottom elevation.

Depressed groundwater conditions.

Elevated groundwater conditions.

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI/BSP_ CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

B. OTHER GWM WELLS

Date	B-4	B-6R	B-7	B-8	B-9	B-10	NES-1D	NFS-15	NES-2D	NES-2DD	NFS-25	NES-3	NES-4	NFS-5	NES-AD	NES-4S	NFS-75	NEC-85	PP-1Δ	PP-1R
Monitored		DOK				D 10	11123 12			iter Elevati			IVES 4	1423 3	1123 00	1123 03	1425 75	1123 03	11 14	
1/5/2005	50.00		69.51	79.35	81.10	78.82	T	<u>_</u>											31.67	31.56
2/11/2005	49.32	56.65	69.56	79.49	81.56	80.04													31.55	31.45
3/24/2005	50.98		69.84	81.49	81.84														33.22	33.12
4/21/2005	50.10		69.59	79.31	81.35	80.83													31.40	31.30
5/24/2005	50.50		69.80	79.54	81.65	81.05													31.55	31.46
6/8/2005	50.08		69.71	79.70	81.66														31.55	31.43
7/1/2005	49.53	50.96	69.41	78.85	80.47														30.60	30.50
8/15/2005	49.54	55.76	69.34	79.47	80.52	79.77													31.02	30.91
9/7/2005	49.28		69.06	79.18	77.08	79.27													29.97	30.18
11/18/2005	50.32		69.19	79.47	80.57	78.52													31.52	31.40
12/27/2005	50.58		69.54	78.87	81.16														31.52	30.98
2/6/2006	50.64	56.50	69.82	81.42	81.85	79.18													31.88	31.74
3/24/2006	50.01	56.03	69.15	78.86	79.91	79.04													31.58	31.28
4/6/2006	49.98	55.95	69.16	78.85	80.02	78.92													31.27	31.18
5/4/2006	49.43	55.75	68.94	79.98	79.87	78.87													31.32	31.38
6/12/2006	49.98	61.75+	68.31	78.97	79.56	78.65													31.41	31.37
7/25/2006	49.83	61.25+	67.96	78.70	79.51	78.47													31.17	30.98
8/28/2006	49.32	55.44	68.64	78.81	79.14	78.22													30.10	29.99
9/11/2006	49.83	55.45	68.94	78.87	79.87	78.46													31.34	30.93
10/31/2006	50.05	56.22	69.36	79.10	80.37	79.87													31.47	31.08
11/10/2006	37.88	62.45+	69.90	79.68	80.56	79.72													31.75	31.54
12/14/2006	50.08	56.20	69.41	79.20	80.37	79.27													31.58	31.48
1/1/2007	49.95	56.09	69.20	78.97	80.11	79.83													31.33	30.93
2/2/2007	50.44	56.73	69.62	79.95	80.89	80.00													31.65	31.53
3/7/2007	49.98	56.13	69.24	79.00	82.16	79.88													31.37	30.98
4/7/2007	49.92	56.08	69.22	78.97	80.12	79.86													31.12	30.96
5/7/2007	51.54	55.95	69.26	78.89	80.16	80.25													31.08	30.99
6/1/2007	49.98	56.15	69.27	79.02	80.19	79.89													31.17	31.01
7/1/2007	50.98	55.53	68.66	78.65	80.01	80.12													30.87	30.58
8/7/2007	49.76	55.59	69.19	79.38	81.24	78.98													31.50	31.37
9/7/2007	49.83	57.32	67.96	78.70	79.51	78.47													31.17	30.95
10/7/2007	48.99	55.32	68.74	78.95	79.47	78.04													32.00	31.87
11/7/2007	49.98	61.75+	68.31	78.97	79.56	78.65													31.41	31.37
12/7/2007	48.98	61.75+	68.21	78.60	79.47	78.57													31.35	30.88
1/8/2008	50.38	51.42	69.46	80.90	81.37	78.07													31.97	30.78
2/1/2008	51.06	56.03	69.30	80.22	81.33	77.83													31.79	31.67
3/8/2008	50.38	53.72	69.46	78.30	81.07	79.97													31.87	31.38
4/8/2008	50.08	51.92	69.06	79.10	81.17	78.27													31.67	31.56
5/8/2008	50.08	52.32	69.14	78.90	80.37	78.67													31.47	31.28
6/8/2008	50.30	56.78	69.90	80.08	82.04	80.98													31.60	31.51

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	B-4	B-6R	B-7	B-8	B-9	B-10	NES-1D	NES-1S	NES-2D	NES-2DD	NES-2S	NES-3	NES-4	NES-5	NES-6D	NES-6S	NES-7S	NES-8S	PP-1A	PP-1B
Monitored								G	roundwa	ter Elevati	on (ft-AA	NSL)								
7/8/2008	50.08	56.35	69.76	79.90	81.47	81.17													31.37	31.38
8/8/2008	49.86	56.16	69.60	73.27	80.66	80.75													31.19	31.06
9/8/2008	49.61	55.74	69.34	79.48	81.03	79.64													31.58	31.46
10/8/2008	49.66	55.64	69.17	79.24	80.14	79.11													31.79	31.67
11/8/2008	50.04	55.76	69.13	79.31	80.08	78.75													31.59	31.57
12/8/2008	50.67	64.9+	69.34	79.78	80.89	78.71													31.64	31.52
1/26/2009	50.43	56.06	69.16	79.44	79.96	78.59													31.48	31.37
2/17/2009	50.34	56.07	69.11	79.41	79.86	78.43													31.60	31.48
3/27/2009	50.19	55.98	69.08	79.35	79.78	78.26													31.62	31.50
4/28/2009	50.70	56.24	69.53	80.01	81.29	78.78													31.57	31.45
5/22/2009	50.57	56.52	69.68	80.08	81.40	79.25													31.46	31.35
6/25/2009	50.29	56.45	69.71	79.99	81.09	79.53													31.36	31.25
7/1/2009	49.76	56.06	69.33	79.68	80.30	79.58													30.72	30.57
8/1/2009	49.69	55.93	69.34	79.71	80.85	79.35													31.47	31.36
9/24/2009	50.31	55.81	69.42	79.85	80.25	79.15													31.42	31.31
10/29/2009	51.80	56.12	70.03	82.18	81.93	79.52													32.21	32.08
11/25/2009	51.37	56.63	70.38	83.59	82.47	80.47													32.25	32.12
12/30/2009	51.40	57.52	70.42	80.97	81.97	81.71													31.66	31.55
1/28/2010	50.68	57.00	70.28	80.92	82.28	82.43													31.71	31.60
3/1/2010	51.37	57.10	70.78	81.37	82.51	83.06													32.14	32.00
4/8/2010	50.59	57.34	70.45	80.66	82.30	84.11													31.52	31.40
5/28/2010	49.98	56.42	69.93	80.06	81.48	82.05													31.29	31.17
6/30/2010	49.40	55.85	69.63	79.77	80.65	81.02													30.62	30.45
7/28/2010	49.35	55.64	69.53	79.74	80.84	80.39													31.10	30.99
8/16/2010	50.23	55.67	69.61	79.80	80.89	79.91													31.36	31.24
9/23/2010	49.58	55.43	69.12	79.14	79.56	79.19													30.78	30.65
10/21/2010	50.49	55.91	69.58	79.94	80.59	79.25													31.49	31.37
11/22/2010	50.40	56.03	69.47	79.86	80.26	78.99													31.46	31.34
12/16/2010	50.68	56.06	69.57	80.10	80.53	78.83													31.55	31.42
1/6/2011	50.32	56.05	69.33	79.67	79.85	78.73													31.49	31.37
2/7/2011	51.05	56.13	69.70	80.46	81.42	78.64													31.80	31.66
3/3/2011	50.57	56.26	69.51	79.99	80.61	78.55													31.54	31.42
4/7/2011	50.58	56.78	69.74	80.14	81.20	79.44													31.48	31.37
5/3/2011	50.42	56.63	69.75	80.05	81.14	79.70													31.44	31.33
6/24/2011	49.64	55.92	69.29	79.42	79.88	79.22													30.77	30.65
7/25/2011	49.02	55.50	68.85	78.92	79.44	78.77													30.21	30.10
8/15/2011	48.77	55.42	68.94	79.22	80.22	78.47													30.65	30.53
9/26/2011	50.96	57.24	70.38	80.65	81.69	80.45													31.60	31.45
10/27/2011	50.43	56.69	70.00	80.05	80.85	80.47													31.42	31.28
11/18/2011	50.40	56.50	69.92	80.07	81.21	80.20													31.41	31.27
12/20/2011	50.70	57.04	70.02	80.22	81.08	80.88													31.38	31.24
1/16/2012	50.57	56.72	70.01	80.33	81.24	80.86													31.39	31.16
2/13/2012	50.35	56.57	69.82	80.06	81.08	80.73													31.32	31.18
3/5/2012	50.89	56.51	70.00	80.50	80.59	81.51													31.52	31.38

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date	B-4	B-6R	B-7	B-8	B-9	B-10	NES-1D	NES-1S	NES-2D	NES-2DD	NES-2S	NES-3	NES-4	NES-5	NES-6D	NES-6S	NES-7S	NES-8S	PP-1A	PP-1B
Monitored							•			ter Elevati									•	
4/18/2012	50.11	56.33	69.55	79.59	80.11	80.06													31.10	30.96
5/7/2012	50.06	56.19	69.50	79.57	80.09	79.81													31.14	31.01
6/11/2012	49.63	55.86	69.23	79.30	79.75	79.34													30.85	30.72
7/27/2012	48.93	55.44	68.83	78.98	79.22	78.75													30.85	30.73
8/13/2012	48.63	55.31	68.80	78.95	78.88	78.51													30.91	30.78
9/21/2012	48.19	55.25	68.70	78.89	78.84	77.94													31.02	30.88
10/4/2012	48.26	55.24	68.44	78.58	78.37	77.74													31.07	30.93
11/15/2012	50.30	55.61	68.81	79.04	78.74	77.59													31.25	31.10
12/12/2012	50.04	55.62	68.50	78.79	78.31	77.22													31.30	31.14
1/29/2013	50.37	55.80	65.78	79.24	78.87	77.37							 						31.38	31.23
2/11/2013	50.53	55.93	69.04	79.64	79.65	77.55							 						31.93	31.73
3/21/2013	50.53	56.28	69.20	79.58	79.73	78.01													31.34	31.19
4/8/2013	50.31	56.37	69.11	79.44	79.58	77.96													31.29	31.16
5/14/2013	50.21	56.19	69.27	79.65	80.30	78.11													31.29	31.13
6/14/2013	50.85	56.10	69.47	79.88	80.47	78.33													31.32	31.18
7/9/2013	50.18	55.98	69.44	79.64	80.19	78.69													30.99	30.86
7/29/2013	49.98	56.36	69.41	79.50	79.89	78.95													30.77	30.64
8/15/2013	49.62	55.86	69.25	73.32	79.69	78.87													30.78	30.64
													-	-					-	_
9/11/2013	49.03	55.54	68.76	78.88	79.03	78.65													30.58	30.44
10/25/2013	50.42	55.78	69.25	79.39	79.47	78.59													31.12	30.97
11/7/2013	50.17	55.79	69.14	73.23	79.06	78.41													31.22	31.07
12/13/2013	51.14	55.91	69.61	80.22	80.20	78.54													31.71	31.52
1/17/2014	50.97	56.33	69.82	80.37	43.27	79.16													31.73	31.56
2/11/2014	50.89	56.57	69.73	79.74	80.50	79.27													31.42	31.26
3/24/2014	48.10	56.86	70.00	77.93	80.95	77.39													28.95	28.77
4/25/2014	50.46	56.93	69.96	80.08	81.05	80.84													31.26	31.11
5/15/2014	50.40	57.18	70.03	79.99	81.25	81.68													31.10	30.95
6/24/2014	49.89	56.29	69.80	79.71	80.75	81.37													30.76	30.59
7/9/2014	49.63	56.02	69.63	79.51	83.29	80.96	54.52	55.21	28.95		26.57	25.74	47.40	57.27					30.75	30.60
8/13/2014	51.48	55.80	69.92	80.36	81.47	80.26	54.62	55.27	29.77		28.42	27.89	49.93	57.28					32.01	31.85
9/22/2014	49.67	55.47	69.17	79.07	79.36	79.48	54.00	54.66	28.19		25.95	25.43	46.90	56.72					30.61	30.46
10/27/2014	49.75	55.53	69.19	79.19	79.60	78.91	54.07	54.81	29.08		27.50	27.25	47.46	56.79					30.98	30.81
11/14/2014	49.79	55.56	69.06	79.14	79.11	78.66	54.12	54.87	29.13		27.63	27.28	47.67	56.84					31.03	30.87
12/17/2014	50.64	55.71	69.55	80.02	80.52	78.67	54.34	55.07	29.78		28.12	27.86	48.46	57.03					31.79	31.58
1/15/2015	50.85	55.84	69.70	80.45	80.66	78.68	54.48	55.20	29.99		28.28	27.91	49.51	57.20					31.73	31.56
2/5/2015	50.83	56.01	69.71	80.20	80.56	79.01	54.58	55.36	29.99		28.24	27.86	49.55	57.29					31.56	31.38
3/16/2015	51.24	56.29	70.11	81.21	81.51	79.02	54.59	55.67	30.31		28.49	27.96	50.05	57.77					31.88	31.68
4/28/2015	50.62	56.64	69.84	80.06	80.69	79.41	55.07	55.94	30.19		28.28	27.68	49.70	57.92					30.96	31.34
5/29/2015	49.88	56.23	69.50	79.27	80.09	79.37	54.73	55.47	29.41		27.46	26.85	48.61	57.60					30.78	30.61
6/22/2015	50.33	56.04	69.85	80.30	81.01	79.51	54.74	55.43	30.04		28.32	27.90	49.04	57.55					31.72	31.55
7/30/2015	49.85	55.88	69.63	79.65	80.13	79.93	54.47	55.11	28.90		26.65	25.88	47.75	57.32					30.61	30.46
8/17/2015	49.39	55.63	69.39	79.35	79.63	79.62	54.17	54.77	29.14		25.90	25.11	46.80	56.89					30.45	30.30
9/16/2015	48.66	55.32	68.97	78.79	78.96	79.11	53.78	54.48	27.31		25.24	24.32	46.03	56.54					30.31	30.17
			69.59	79.71	79.99	78.97	54.17	54.89	29.22		27.81		47.97	56.88						30.96
10/8/2015	50.13	55.59										27.45							31.13	

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Date l	B-4	B-6R	B-7	B-8	B-9	B-10	NES-1D	NES-1S	NES-2D	NES-2DD	NES-2S	NES-3	NES-4	NES-5	NES-6D	NES-6S	NES-7S	NES-8S	PP-1A	PP-1B
Monitored										ter Elevation						11.20 00				
11/9/2015	50.01	55.65	69.25	79.28	79.25	78.66	54.18	54.99	29.35		27.80	27.35	48.02	56.92					31.06	30.88
12/3/2015	50.17	55.75	69.85	81.83	80.60	78.55	54.39	55.14	29.89	30.33	28.56	27.91	48.63	57.05	28.29	27.58			31.85	31.64
1/6/2016	50.57	55.84	69.64	79.92	80.05	78.43	54.35	55.20	29.93	30.40	28.43	27.63	49.60	57.05	28.11	27.43			31.19	31.01
2/8/2016	51.07	56.21	70.12	80.76	81.37	79.12	54.78	55.61	30.40	30.89	28.84	27.91	49.95	57.69	28.38	27.46			31.65	31.49
3/18/2016	50.31	56.68	69.66	79.88	80.32	79.38	55.00	55.99	30.04	30.50	28.42	27.49	49.36	58.06	28.17	27.13			31.08	30.91
4/25/2016	50.02	56.28	69.44	79.49	79.73	79.09	54.75	55.55	29.53	29.97	27.91	26.96	49.16	57.64	25.90	26.65			30.85	30.69
5/31/2016	50.25	56.14	69.74	79.99	81.13	79.10	54.91	55.45	30.15	30.62	28.57	27.88	49.33	57.63	28.35	27.34			31.28	31.12
6/13/2016	49.91	56.04	69.43	79.59	80.14	79.08	54.47	55.30	29.36	29.84	27.52	26.53	49.73	57.26	27.42	26.28			30.48	30.39
7/7/2016	49.62	55.89	69.40	79.63	80.42	78.83	54.42	55.13	29.64	30.14	28.16	27.35	47.79	56.15	27.99	27.07			30.66	30.51
8/8/2016	49.48	55.59	69.19	79.26	79.64	78.55	54.13	54.79	29.36	29.80	27.87	26.72	47.27	56.82	27.73	26.76			30.54	30.38
9/9/2016	48.82	55.28	68.68	78.68	78.85	78.22	53.75	54.47	28.24	28.70	26.28	25.54	46.27	56.50	26.59	25.57			30.41	30.26
10/28/2016	50.17	55.61	69.02	79.10	78.99	77.94	54.10	54.91	29.38	29.84	27.97	27.14	47.65	56.77	27.77	26.97			30.73	30.56
11/22/2016	50.05	55.59	68.57	78.50	78.39	77.65	54.08	54.94	28.97	29.41	27.69	26.87	47.73	56.73	27.57	26.76			30.69	30.51
12/6/2016	49.99	55.57	68.65	78.64	78.26	77.16	54.08	54.91	29.18	29.58	28.04	27.35	47.77	56.75	27.83	27.11			30.83	30.65
1/5/2017	50.64	55.63	69.17	80.08	79.20	76.97	54.20	55.05	29.64	30.27	28.62	28.07	48.16	56.91	27.95	27.39			31.72	31.46
2/20/2017	50.25	55.68	68.68	78.50	78.56	77.32	54.10	58.77+	29.22	29.66	27.93	27.61	48.86	56.77	28.11	27.19			30.82	30.64
3/17/2017	50.03	55.69	69.03	79.59	78.88	77.09	54.17	55.09	29.78	30.19	28.47	27.84	48.82	56.76	28.25	27.34			31.50	31.26
4/13/2017	50.64	55.88	69.16	79.51	79.30	77.62	54.33	55.29	29.97	30.42	28.50	27.69	49.65	57.04	28.17	27.31			31.01	30.84
5/4/2017	50.19	55.90	69.05	79.31	79.29	77.62	54.32	55.21	29.69	30.15	28.18	27.21	49.09	57.07	27.97	27.00			30.68	30.51
6/15/2017	49.98	55.64	71.10	77.39	77.99	76.81	54.25	55.05	29.14	29.62	27.38	26.38	48.20	56.98	27.73	26.22			28.90	28.97
7/24/2017	49.18	55.21	70.90	77.29	77.89	75.88	53.95	54.69	29.19	29.56	27.85	28.23	46.82	56.64	28.03	27.86	27.43	29.75	30.54	30.59
8/31/2017	50.09	55.38	70.75	77.04	77.57	76.20	54.04	54.83	29.17	29.65	27.77	27.10	48.06	56.33	27.66	26.72	26.38	30.17	28.71	28.77
9/22/2017	49.96	55.28	70.95	77.21	77.62	76.48	53.88	54.69	29.28	29.73	27.87	26.97	47.46	56.57	27.67	26.75	26.41	30.31	29.58	29.03
10/23/2017	49.71	55.11	70.62	76.67	76.92	76.08	53.74	54.53	28.60	29.04	27.28	26.46	47.27	56.51	27.07	26.27	26.15	29.64	29.01	29.06
11/30/2017	50.17	55.28	70.59	77.27	76.95	75.91	53.85	54.81	29.34	29.76	28.13	27.35		56.58	27.79	27.05	26.70	30.39	29.24	29.28
1/29/2018	49.97	55.25	70.33	76.62	76.68	75.47	53.88	54.80	29.40	29.70	28.35	27.74	47.90	56.64	27.98	27.18	26.86	30.40	30.25	29.61
2/12/2018	51.85	55.47	71.37	81.94	78.04	75.60	54.25	55.21	30.41	30.76	29.23	28.16	50.74	56.84	28.77	27.59	27.15	31.73	31.58	30.71
3/15/2018	50.51	55.76	71.09	77.45	77.64	76.52	54.28	55.28	29.97	30.42	28.69	27.81	49.28	57.19	28.28	27.30	26.90	31.15	29.53	29.59
4/6/2018	50.54	55.89	71.20	77.50	77.79	76.61	54.38	55.41	30.01	30.46	28.56	27.71	49.46	57.37	28.27	27.29	26.89	31.26	29.45	29.51
5/31/2018	50.65	56.48	71.65	77.81	78.75	77.27	54.88	54.95	30.21	30.69	28.58	27.59	49.62	58.26	28.21	27.13	26.75	31.74	29.26	29.32
6/13/2018	50.72	56.84	72.05	78.62	79.76	77.80	55.17	56.24	30.53	31.04	28.81	27.96	49.60	58.64	28.50	27.31	26.95	32.05	29.65	29.68
7/6/2018	50.04	56.19	71.36	77.38	78.37	77.74	54.62	55.63	29.22	29.70	27.34	26.30	48.05	57.73	27.68	25.72	26.24	30.57	28.76	29.20
8/23/2018	50.32	56.16	72.14	78.23	79.89	78.82	54.88	55.60	30.42	30.74	28.73	27.95	48.87	58.23	28.42	26.73	26.94	31.50	29.55	29.60
9/11/2018	50.33	55.96	72.38	78.75	80.23	78.84	54.72	55.44	30.23	30.71	28.71	28.03	48.37	57.32	28.42	27.56	26.96	31.46	30.27	29.87
10/16/2018	50.77	55.94	72.29	78.54	80.05	79.43	54.75	55.45	30.41	30.89	29.32	27.99	49.64	57.38	28.43	27.22	27.01	31.75	29.57	29.48
11/14/2018	51.63	56.17	72.73	80.20	80.74	80.08	55.00	55.70	30.77	31.26	29.22	28.21	49.98	57.61	28.84	27.53	27.11	32.35	32.53	30.26
12/5/2018	50.67	56.57	72.43	78.83	80.49	80.63	55.16	56.03	30.63	31.08	29.06	28.11	49.64	57.90	28.58	27.48	27.08	32.05	29.65	29.58
1/17/2019	50.16	56.83	72.48	78.79	80.76	81.46	55.25	56.23	30.62	31.09	29.11	28.13	49.51	58.12	28.61	27.48	26.36	31.98	29.51	29.55
2/4/2019	50.71	56.92	72.59	78.82	80.79	81.91	55.30	56.32	30.56	31.14	29.20	28.25	49.69	58.26	28.67	27.48	27.18	29.08	29.72	29.79
3/4/2019	51.37	57.00	73.19	82.47	81.45	82.75	55.48	56.46	31.23	31.84	29.70	28.57	50.02	58.50	29.12	27.96	27.60	32.90	31.08	30.88
4/18/2019	50.26	56.80	72.54	78.57	80.95	81.96	55.20	56.11	30.48	30.97	28.92	27.92	49.36	58.13	28.48	27.08	26.82	31.71	29.25	29.34
5/13/2019	50.33	56.59	73.12	81.17	81.56	81.73	55.17	55.87	30.94	31.42	29.56	27.88	49.19	58.02	29.19	27.98			31.07	30.92
6/4/2019	50.05	56.29	72.29	75.92	78.41	78.59	54.77	55.58	29.64	28.45	28.10	26.96	48.46	57.55	27.64	26.89	26.12	30.83	28.41	28.92
7/9/2019	48.43	55.54	70.35	77.38	80.47	80.27	54.32	54.95	30.66	31.00	29.29	28.37	48.59	55.30	28.85	28.42		31.42	29.93	29.82

CALCULATED BY: __GRI/BSP_ APPENDIX II-C CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

Reston, VA 20190 703 471-6150 FAX 703 471-6676

11260 Roger Bacon Drive

Date	B-4	B-6R	B-7	B-8	B-9	B-10	NES-1D	NES-1S	NES-2D	NES-2DD	NES-2S	NES-3	NES-4	NES-5	NES-6D	NES-6S	NES-7S	NES-8S	PP-1A	PP-1B
Monitored								G	roundwa	ter Elevati	on (ft-A	ASL)								
8/26/2019	49.66	55.46	71.91	77.86	79.33	79.25	54.23	54.85	29.44	29.10	28.15	27.65	47.35	57.00	27.98	27.03	26.58	29.94	28.76	28.82
9/16/2019	49.21	55.26	71.65	77.43	78.67	78.82	53.97	54.58	28.41	28.84	26.82	26.17	46.84	56.81	26.67	25.45	25.22	29.25	28.47	28.55
10/10/2019	47.98	54.60	70.83	76.51	77.66	76.11	53.24	53.94	27.19	27.72	25.72	25.23	45.93	56.05	25.30	24.00	23.77	28.25	27.81	27.89
11/14/2019	50.25	55.46	71.55	77.64	78.58	77.91	54.08	54.91	30.53	29.97	28.33	27.70	47.93	56.91	28.99	26.99	26.61	30.27	28.98	29.05
12/5/2019	50.40	55.50	71.81	78.22	79.19	77.74	54.21	55.05	29.92	30.38	28.75	28.03	48.10	56.87	28.15	27.38	26.97	30.76	29.68	29.53
1/21/2020	50.55	55.75	71.93	78.33	79.24	77.96	54.42	55.27	30.25	30.74	28.97	28.07	49.64	57.21	28.30	27.37	26.94	31.43	29.43	29.47
2/18/2020	50.92	56.00	72.24	78.72	80.05	78.47	54.73	55.62	30.61	31.07	29.19	28.12	49.91	57.58	28.55	27.47	27.00	32.08	29.64	29.65
3/16/2020	50.28	56.12	71.73	78.00	79.13	78.12	54.68	55.55	30.17	30.62	28.82	27.80	49.38	57.48	28.27	27.19	26.81	31.41	29.15	29.19
4/2/2020	50.60	56.20	72.03	78.54	80.11	78.43							49.63	57.72						
5/5/2020	51.35	56.44	72.62	79.67	80.71	78.87							50.29	57.99						
6/11/2020	50.02	56.26	71.82	77.99	82.53	78.77	54.79	55.67	29.94	30.42	28.54	27.61	48.79	57.48	28.07	27.05	26.77	31.14	28.80	28.85
7/9/2020	50.82	55.93	72.04	78.39	80.02	78.50	54.68	55.40	30.61	30.79	28.95	28.12	49.66	57.37	28.55	27.45	27.03	31.39	29.42	29.47
8/14/2020	50.91	55.89	72.60	80.42	80.73	77.96	54.79	55.38	30.84	31.34	29.46	28.35	49.71	57.41	28.92	27.67	27.18	31.99	30.89	30.26
9/11/2020	50.55	56.01	72.63	80.17	80.73	79.43	54.83	55.47	31.12	31.48	29.63	28.69	49.33	57.53	29.39	29.40	28.15	32.17	30.99	30.67
10/29/2020	51.88	55.98	72.81	84.49+	81.57	79.66	54.99	55.55	30.66	31.14	29.51	28.74	49.17	57.97	28.56	27.66	27.21	31.78	31.39	31.05
11/24/2020	50.63	56.35	72.26	78.67	80.25	80.35	55.03	55.80	30.55	31.06	29.06	28.13	49.63	57.84	28.58	27.47	27.14	32.03	29.16	29.20
12/14/2020	50.73	56.67	72.45	79.26	80.79	80.63	55.29	56.12	30.66	31.21	28.45	28.32	49.72	58.24	27.02	29.21	27.23	32.16	29.52	29.53
Maximum	51.88	57.52	73.19	83.59	83.29	84.11	55.48	56.46	31.23	31.84	29.70	28.74	50.74	58.64	29.39	29.40	28.15	32.90	33.22	33.12
Minimum	37.88	50.96	65.78	73.23	43.27	75.47	53.24	53.94	27.19	27.72	25.24	24.32	45.93	55.30	25.30	24.00	23.77	28.25	27.81	27.89

Notes: 1. GWE, '---', and ft-AMSL means groundwater elevation, data not recorded, and feet above mean sea level, respectively.

^{2.} GWE data with '+" sign is identified as high outlier.

Depressed groundwater conditions.

Elevated groundwater conditions.

APPENDIX II-C

SCS ENGINEERS

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

Table II-C-2 Box-Whisker Plot and Rosner's (Generalized ESD) Outlier Test Results (Brown Station Road Sanitary Landfill)

GWM Well		PI	from Box ot		Number o	
ID		utliers	Extreme	Outliers	IIOIII KOSI	
	Low	High	Low	High	Low	High
A. CRITICAL	WELLS SUI	BSET	ı	ı		
A-1	4	1	0	3	0	3
A-4	0	0	0	0		
A-11	0	0	1	4	1	4
A-12	0	0	0	0		
A-13	5	3	4	0	6	3
A-14	0	0	0	1	0	1
A-21	2	2	0	1	1	1
PP-2A	2	1	1	0	1	1
PP-2B	2	2	1	0	1	1
PP-5A	2	0	0	0		
PP-5B	1	0	0	0		
PP-6A	1	2	0	0	1	0
PP-6B	18	2	2	0	1	0
PP-8	0	28	0	2	0	0
Reference			2 and II-C	:-3	Exhibit	II-C-9
B. OTHER WE	LLS SUBSE	T				
A-2	1	1	1	0	1	0
A-3	1	20	2	3	2	0
A-10	0	1	8	0	8	1
A-15	2	1	3	0	5	0
A-16	1	1	0	0		
A-17	4	1	1	0	2	0
A-18	2	0	0	1	1	1
A-19	2	3	0	1	1	1
A-20	2	10	0	2	0	2
A-22	12	0	3	0	2	0
A-22D	0	0	0	0		
A-23	11	0	0	0		
B-1	0	1	5	0	5	1
B-2	0	0	0	0		
B-2R	4	0	1	0	2	0
B-3	2	0	0	3	0	3
B-4	7	3	1	0	1	0
B-6R	1	1	4	6	4	6

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

GWM Well	Number		s from Box ot	c-Whisker	Number o	
ID	Mild C	utliers	Extreme	Outliers	IIOIII KOSI	iei s iesi
	Low	High	Low	High	Low	High
B-7	0	21	1	0	0	0
B-8	4	4	3	2	3	2
B-9	4	1	1	0	1	0
B-10	7	5	0	0		
PP-1A	15	1	1	0	0	0
PP-1B	11	1	0	0	1	
NES-1D	0	0	0	0		
NES-1S	0	0	0	1	0	1
NES-2D	2	0	0	0		
NES-2DD	1	0	0	0		
NES-2S	5	0	0	0		
NES-3	5	0	0	0		
NES-4	0	0	0	0		
NES-5	1	0	0	0		
NES-6D	1	0	1	0	6	1
NES-6S	3	1	1	2	4	2
NES-7S	1	1	1	0	2	0
NES-8S	0	0	0	0		
Reference	Exh	ibits II-C-4	through	C-8	Exhibits II- C-	

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI/BSP_ CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

EXHIBIT II-C-1. OUTLIER ANALYSES

Potential outliers are the extreme, unusual-looking, large or small measurements relative to the rest of data. These extremely large or too small measurements are suspected of misrepresting the population from which the data was collected. Outliers generally result from transcription or data-coding errors, inaccurate measurement due to measuring-system/instrument errors or problems.

Potential outliers are identified by using either graphical or statistical (parametric or non-parametric) methods. We used:

- A. Box Whisker Plot (a graphical method) for initial screening of outliers.
- B. The generalized ESD (extreme Studentized deviate) test developed by Rosner in 1983. This is parametric test which helps in identify up to 10 outliers.

A. IDENTIFYING OUTLIERS USING BOX AND WHISKER PLOT

EPA's document "Data Quality Assessment: Statistical Methods for Practitioners, EPA QA/G-9S (EPA/240/B-06/003, February 2006" [15] provides guidance on plotting and using Box and Whisker plot to identify outliers. According to this document, data that is outside the range (1^{st} quartile (Q_1)- 1.5 x interquartile range(1^{st} quartile (1^{st}

However, the e-Handbook of Statistical Methods, NIST/SEMATECH, April 2012, accessed on March 1, 2021 with revision up to February 2021^[17] and EPA's document "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (EPA 530/R-09-007), March 2009"^[14], describe two types of fences for finding outliers and two different types of outliers based on these fences. The fences and outlier are described below:

1. Fences:

Fences and their boundaries and outliers (Figure II-C-1) are described below.

(a) Inner fence or first pair of boundaries' lower and upper bounds are given below.

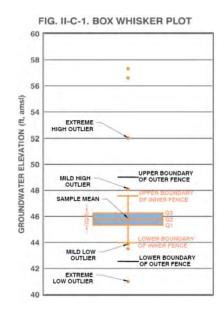
Lower boundary (LB₁) of inner fence = Q1 - 1.5*IQR Upper boundary (UB₁) of inner fence = Q3 + 1.5*IQR

> where: Q1 = 1st quartile (25th percentile) Q3 = 3rd quartile (75th percentile), and

> > IQR = inter quartile range = Q3 - Q1

(b) Outer fence or second pair of boundaries' lower and upper bounds are given below.

Lower boundary (LB₂) of outer fence = Q1 - 3*IQRUpper boundary (UB₂) of outer fence = Q3 + 3*IQR


2. Outliers:

Mild Low Outlier: Data point(s) between LB₁ and LB₂.

Extreme Low Outlier: Data point(s) below LB₂.

Mild High Outlier: Data point(s) between UB_1 and UB_2 .

Extreme High Outlier: Data point(s) above UB₂.

We determined both mild low/high and extreme low/high outliers for each well. The results of are presented in Exhibits II-C-2 through II-C-8. The figures in these exhibits show inner fence only.

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI/BSP_ CHECKED BY: __BSP/DDD/PS_ DATE __12/20/2021__

B. IDENTIFYING OUTLIERS USING THE GENERALIZED ESD TEST (ROSNER, 1983)

The generalized ESD (Extreme Studentized Deviate) test (Rosner, 1983^[16]) or Rosner's test is used to detect multiple outliers in the univariate data set and it assumes that the data set follows an approximately normal distribution. Given an upper bound (r) on number of outliers, the generalized ESD test performs r separate tests: a test for one outlier, a test for two outliers, and so on. The test is briefly described below:

The hypothesis for Rosner's test is as defined below:

H₀: There are no outliers in the data set

H_A: There are up to r outliers in the data set

TEST:

Assume that data contains n observations. Compute R_i statistics for all n observation, as below:

$$R_i = \frac{MAX \; |x_{i-\bar{x}}|}{s}$$

where; $x_i = i$ 'th data

 \bar{x} = sample mean

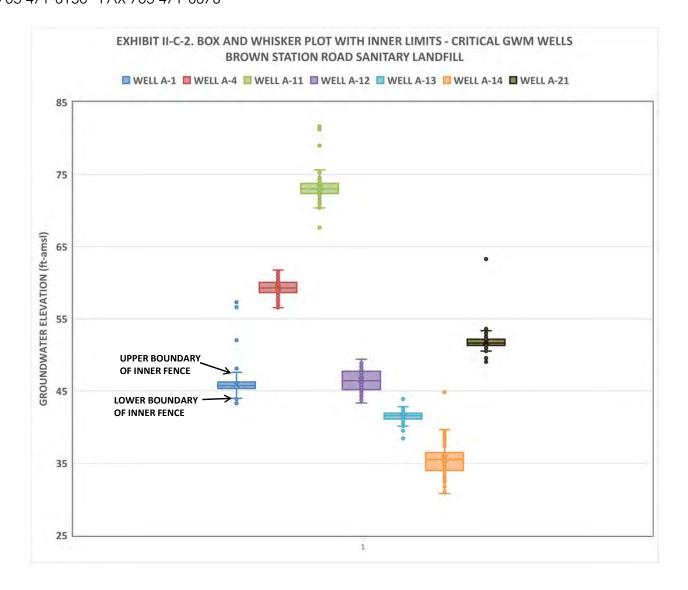
s = sample standard deviation

Sort and remove the observation that maximizes Ri, recompute R_i statistics for n-1 observation and sort and remove observation that maximizes R_i . Continue this process until r observations have been removed. This would result in r numbers of test statistics (R_1, R_2, R_r). Corresponding to these r numbers of test statistics, compute the following critical values (λ_k).

$$\lambda_k = \frac{(n-i) \ t_{p,(n-k-1)}}{\sqrt{\left(n-k-1 + t_{p,(n-k-1)}^2\right) (n-k+1)}}$$

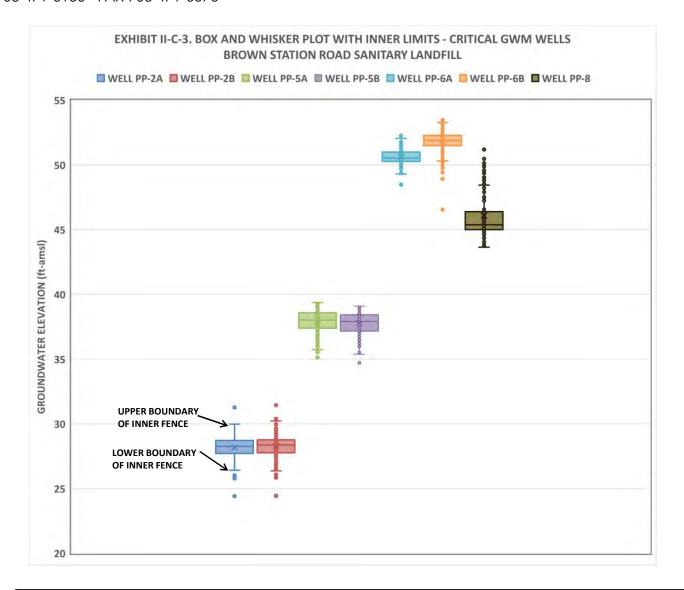
where; k = 1, 2, 3, ...

 $t_{p,(n-k-1)}$ = is the critical value at p percentage point from t distribution with (n-k-1) degree of freedom

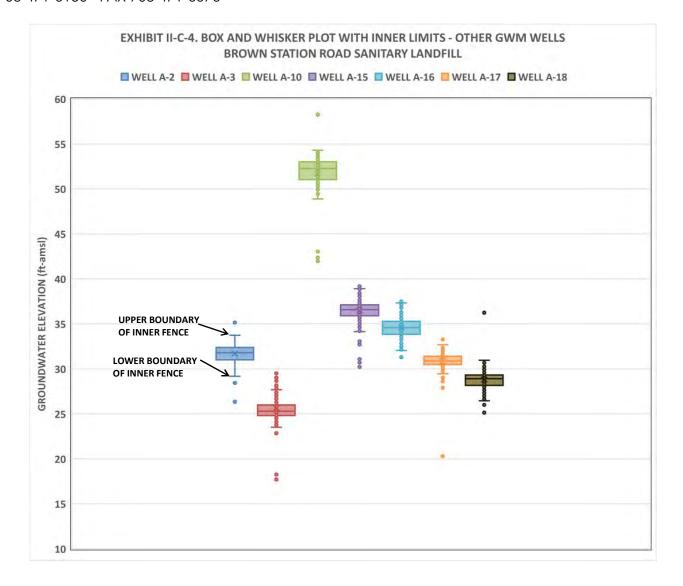

$$p=1-rac{lpha}{2\,(n-k+1)}$$
 and

 α = significance level

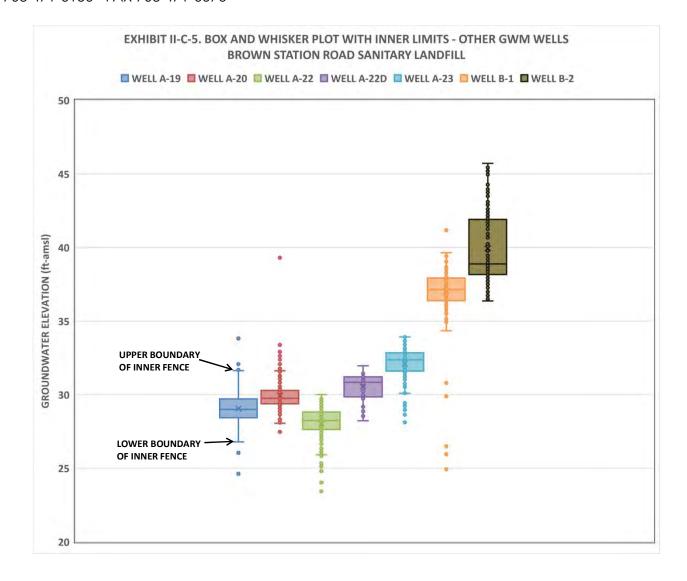
The number of outliers are determined by finding the largest k such that $R_k > \lambda_k$


The outlier test statistics are presented in Exhibits II-C-9 and C-10.

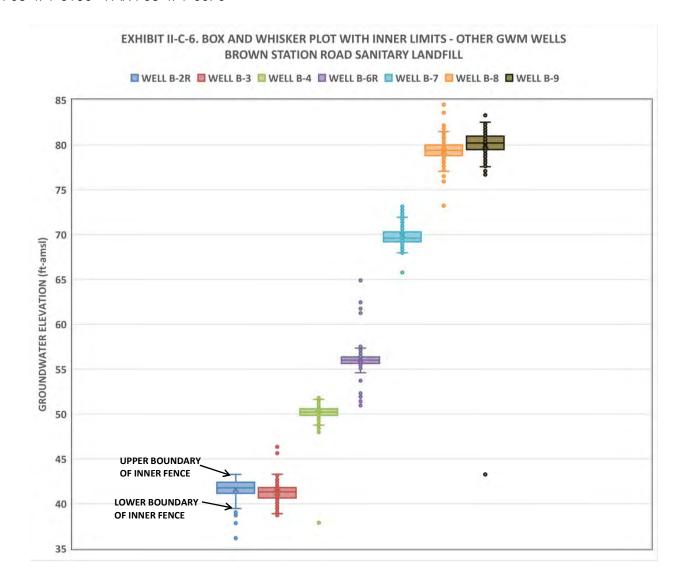
11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676


WELL A	\-1	WELL A	۱-4	WELL A	-11	WELL A	\-12	WELL A	-13	WELL A	-14	WELL A	A-21
Minimum	43.28	Minimum	56.55	Minimum	67.62	Minimum	43.33	Minimum	38.43	Minimum	30.77	Minimum	49.03
Maximum	57.31	Maximum	61.75	Maximum	82.02	Maximum	49.39	Maximum	44.19	Maximum	44.82	Maximum	63.27
Sample Size	187	Sample Size	187	Sample Size	189	Sample Size	189	Sample Size	189	Sample Size	188	Sample Size	186
Mean	45.86	Mean	59.28	Mean	73.16	Mean	46.49	Mean	41.45	Mean	35.65	Mean	51.78
Q1	45.33	Q1	58.63	Q1	72.37	Q1	45.18	Q1	41.12	Q1	33.97	Q1	51.30
Median	45.74	Median	59.27	Median	73.00	Median	46.42	Median	41.58	Median	35.48	Median	51.65
Q3	46.25	Q3	60.05	Q3	73.75	Q3	47.73	Q3	41.93	Q3	36.45	Q3	52.16
IQR	0.92	IQR	1.42	IQR	1.38	IQR	2.56	IQR	0.80	IQR	2.48	IQR	0.86
LB ₁	43.95	LB ₁	56.50	LB ₁	70.30	LB ₁	41.34	LB ₁	39.91	LB ₁	30.26	LB ₁	50.00
UB ₁	47.63	UB ₁	62.18	UB ₁	75.82	UB ₁	51.56	UB ₁	43.13	UB ₁	40.17	UB ₁	53.45
Mild Outliers	i:	Mild Outliers	:	Mild Outliers	i:	Mild Outlier	s:	Mild Outliers	i:	Mild Outliers	: :	Mild Outliers	::
Low	4	Low	0	Low	0	Low	0	Low	5	Low	0	Low	2
High	1	High	0	High	0	High	0	High	3	High	0	High	2
LB ₂	42.57	LB ₂	54.37	LB ₂	68.23	LB ₂	37.51	LB ₂	38.71	LB ₂	26.54	LB ₂	48.71
UB ₂	49.01	UB ₂	64.31	UB ₂	77.89	UB ₂	55.40	UB ₂	44.34	UB ₂	43.88	UB ₂	54.75
Extreme Out	liers:	Extreme Out	liers:	Extreme Out	liers:	Extreme Ou	tliers:	Extreme Out	liers:	Extreme Out	lliers:	Extreme Out	liers:
Low	0	Low	0	Low	1	Low	0	Low	4	Low	0	Low	0
High	3	High	0	High	4	High	0	High	0	High	1	High	1

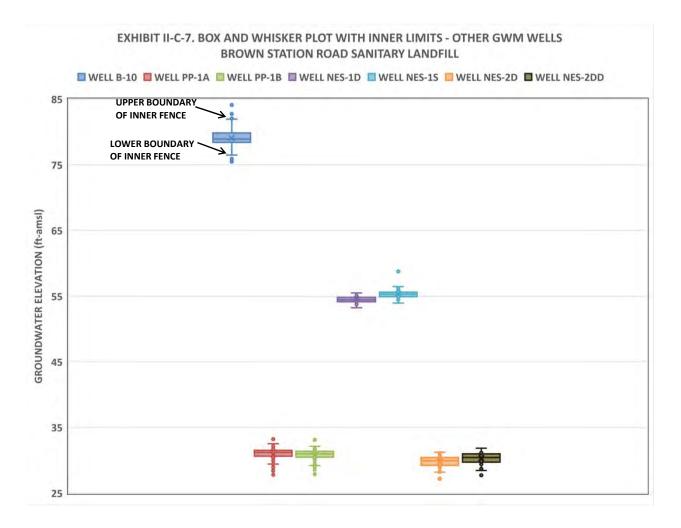
11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676


WELL PF	P-2A	WELL PF	P-2B	WELL PF	'-5A	WELL P	P-5B	WELL PP	-6A	WELL PI	P-6B	WELL F	PP-8
Minimum	24.41	Minimum	24.44	Minimum	35.13	Minimum	34.71	Minimum	48.49	Minimum	46.55	Minimum	43.65
Maximum	31.27	Maximum	31.44	Maximum	39.37	Maximum	39.10	Maximum	52.29	Maximum	53.69	Maximum	51.19
Sample Size	186	Sample Size	187	Sample Size	187	Sample Size	187	Sample Size	186	Sample Size	186	Sample Size	183
Mean	28.17	Mean	28.29	Mean	37.92	Mean	37.77	Mean	50.62	Mean	51.70	Mean	46.07
Q1	27.71	Q1	27.77	Q1	37.39	Q1	37.16	Q1	50.27	Q1	51.49	Q1	45.00
Median	28.26	Median	28.37	Median	38.02	Median	37.90	Median	50.54	Median	51.89	Median	45.38
Q3	28.72	Q3	28.76	Q3	38.58	Q3	38.43	Q3	51.00	Q3	52.29	Q3	46.39
IQR	1.01	IQR	0.99	IQR	1.19	IQR	1.27	IQR	0.73	IQR	0.79	IQR	1.39
LB ₁	26.20	LB ₁	26.29	LB ₁	35.61	LB ₁	35.26	LB ₁	49.17	LB ₁	50.30	LB ₁	42.92
UB ₁	30.22	UB ₁	30.25	UB ₁	40.37	UB ₁	40.34	UB ₁	52.09	UB ₁	53.48	UB ₁	48.48
Mild Outliers	: :	Mild Outliers	:	Mild Outliers	:	Mild Outliers	s:	Mild Outliers	:	Mild Outliers	: :	Mild Outliers	: :
Low	2	Low	2	Low	2	Low	1	Low	1	Low	18	Low	0
High	1	High	2	High	0	High	0	High	2	High	2	High	28
LB ₂	24.70	LB ₂	24.80	LB ₂	33.82	LB ₂	33.35	LB ₂	48.08	LB ₂	49.11	LB ₂	40.83
UB ₂	31.73	UB ₂	31.73	UB ₂	42.15	UB ₂	42.24	UB ₂	53.19	UB ₂	54.67	UB ₂	50.56
Extreme Out	lliers:	Extreme Out	liers:	Extreme Out	liers:	Extreme Ou	tliers:	Extreme Out	liers:	Extreme Out	liers:	Extreme Out	liers:
Low	1	Low	1	Low	0	Low	0	Low	0	Low	2	Low	0
High	0	High	0	High	0	High	0	High	0	High	0	High	2

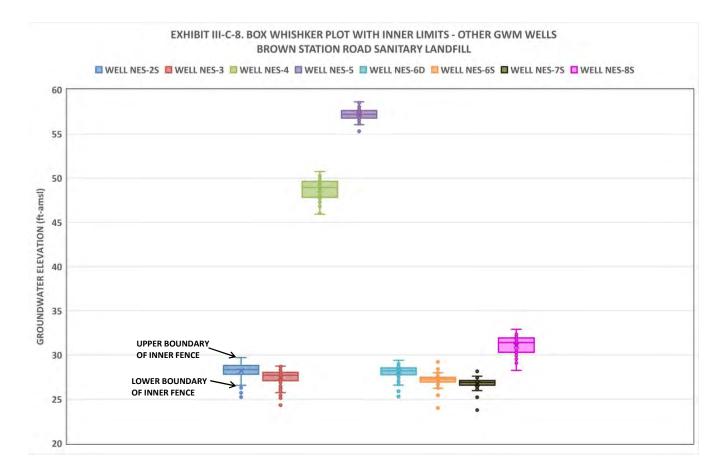
11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676


WELL A	A-2	WELL A	١-3	WELL A	-10	WELL A	\-15	WELL A	-16	WELL A	-17	WELL A	۱-18
Minimum	26.35	Minimum	17.71	Minimum	41.97	Minimum	30.22	Minimum	31.30	Minimum	20.30	Minimum	25.14
Maximum	35.15	Maximum	29.80	Maximum	58.27	Maximum	39.17	Maximum	37.48	Maximum	33.26	Maximum	36.25
Sample Size	187	Sample Size	187	Sample Size	187	Sample Size	188	Sample Size	187	Sample Size	187	Sample Size	187
Mean	31.69	Mean	25.64	Mean	51.75	Mean	36.47	Mean	34.60	Mean	30.86	Mean	28.81
Q1	31.02	Q1	24.82	Q1	51.04	Q1	35.91	Q1	33.85	Q1	30.48	Q1	28.17
Median	31.80	Median	25.29	Median	52.27	Median	36.59	Median	34.59	Median	30.88	Median	28.91
Q3	32.38	Q3	26.00	Q3	53.02	Q3	37.12	Q3	35.29	Q3	31.40	Q3	29.32
IQR	1.36	IQR	1.18	IQR	1.98	IQR	1.22	IQR	1.44	IQR	0.92	IQR	1.15
LB ₁	28.98	LB ₁	23.05	LB ₁	48.07	LB ₁	34.08	LB ₁	31.69	LB ₁	29.10	LB ₁	26.45
UB ₁	34.42	UB ₁	27.77	UB ₁	55.99	UB ₁	38.94	UB ₁	37.45	UB ₁	32.78	UB ₁	31.05
Mild Outliers	s:	Mild Outliers	:	Mild Outliers	i:	Mild Outliers	s:	Mild Outliers	:	Mild Outliers	: :	Mild Outliers	:
Low	1	Low	1	Low	0	Low	2	Low	1	Low	4	Low	2
High	1	High	20	High	1	High	1	High	1	High	1	High	0
LB ₂	26.94	LB ₂	21.28	LB ₂	45.10	LB ₂	32.26	LB ₂	29.53	LB ₂	27.72	LB ₂	24.72
UB ₂	36.46	UB ₂	29.54	UB ₂	58.96	UB ₂	40.77	UB ₂	39.61	UB ₂	34.16	UB ₂	32.77
Extreme Out	lliers:	Extreme Out	liers:	Extreme Out	liers:	Extreme Ou	tliers:	Extreme Out	liers:	Extreme Out	lliers:	Extreme Out	liers:
Low	1	Low	2	Low	8	Low	3	Low	0	Low	1	Low	0
High	0	High	3	High	0	High	0	High	0	High	0	High	1

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676


WELL A	-19	WELL A	-20	WELL A-22		WELL A-22D		WELL A-23		WELL B-1		WELL B-2	
Minimum	24.62	Minimum	27.47	Minimum	23.43	Minimum	28.23	Minimum	28.12	Minimum	24.93	Minimum	36.37
Maximum	33.82	Maximum	39.30	Maximum	30.00	Maximum	31.96	Maximum	33.92	Maximum	41.17	Maximum	45.71
Sample Size	187	Sample Size	187	Sample Size	179	Sample Size	1 47	Sample Size	171	Sample Size	188	Sample Size	185
Mean	29.05	Mean	29.93	Mean	28.01	Mean	30.52	Mean	32.11	Mean	37.01	Mean	39.94
Q1	28.43	Q1	29.38	Q1	27.63	Q1	29.85	Q1	31.60	Q1	36.39	Q1	38.16
Median	29.00	Median	29.75	Median	28.24	Median	30.84	Median	32.37	Median	37.13	Median	38.88
Q3	29.71	Q3	30.28	Q3	28.82	Q3	31.21	Q3	32.84	Q3	37.92	Q3	41.91
IQR	1.28	IQR	0.90	IQR	1.19	IQR	1.36	IQR	1.24	IQR	1.53	IQR	3.75
LB ₁	26.51	LB ₁	28.03	LB ₁	25.85	LB ₁	27.81	LB ₁	29.74	LB ₁	34.09	LB ₁	32.54
UB ₁	31.63	UB ₁	31.63	UB ₁	30.61	UB ₁	33.26	UB ₁	34.70	UB ₁	40.21	UB ₁	47.54
Mild Outliers	::	Mild Outliers:		Mild Outliers:		Mild Outliers:		Mild Outliers	:	Mild Outliers:		Mild Outliers:	
Low	2	Low	2	Low	12	Low	0	Low	11	Low	0	Low	0
High	3	High	10	High	0	High	0	High	0	High	1	High	0
LB ₂	24.59	LB ₂	26.68	LB ₂	24.06	LB ₂	25.76	LB ₂	27.88	LB ₂	31.80	LB ₂	26.91
UB ₂	33.55	UB ₂	32.98	UB ₂	32.39	UB ₂	35.30	UB ₂	36.56	UB ₂	42.51	UB ₂	53.16
Extreme Out	Extreme Outliers:		liers:										
Low	0	Low	0	Low	3	Low	0	Low	0	Low	5	Low	0
High	1	High	2	High	0	High	0	High	0	High	0	High	0

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676


WELL B	WELL B-2R		WELL B-3			WELL B-6R		WELL B-7		WELL B-8		WELL B-9	
Minimum	36.17	Minimum	38.72	Minimum	37.88	Minimum	50.96	Minimum	65.78	Minimum	73.23	Minimum	43.27
Maximum	43.27	Maximum	46.35	Maximum	51.88	Maximum	64.90	Maximum	73.19	Maximum	84.49	Maximum	83.29
Sample Size	150	Sample Size	189	Sample Size	189	Sample Size	ı ixi	Sample Size	189	Sample Size	189	Sample Size	189
Mean	41.58	Mean	41.26	Mean	50.12	Mean	56.14	Mean	69.92	Mean	79.29	Mean	79.95
Q1	41.17	Q1	40.65	Q1	49.86	Q1	55.64	Q1	69.19	Q1	78.80	Q1	79.47
Median	41.78	Median	41.33	Median	50.21	Median	56.01	Median	69.58	Median	79.39	Median	80.20
Q3	42.39	Q3	41.82	Q3	50.59	Q3	56.37	Q3	70.31	Q3	79.99	Q3	80.98
IQR	1.22	IQR	1.17	IQR	0.73	IQR	0.73	IQR	1.12	IQR	1.19	IQR	1.51
LB ₁	39.35	LB ₁	38.89	LB ₁	48.76	LB ₁	54.54	LB ₁	67.52	LB ₁	77.02	LB ₁	77.21
UB ₁	44.22	UB ₁	43.57	UB ₁	51.68	UB ₁	57.46	UB ₁	71.98	UB ₁	81.78	UB ₁	83.25
Mild Outliers	i:	Mild Outliers:		Mild Outliers:		Mild Outliers:		Mild Outliers	:	Mild Outliers:		Mild Outliers:	
Low	4	Low	2	Low	7	Low	1	Low	0	Low	4	Low	4
High	0	High	0	High	3	High	1	High	21	High	4	High	1
LB ₂	37.52	LB ₂	37.14	LB ₂	47.67	LB ₂	53.45	LB ₂	65.85	LB ₂	75.23	LB ₂	74.94
UB ₂	46.04	UB ₂	45.33	UB ₂	52.78	UB ₂	58.56	UB ₂	73.65	UB ₂	83.56	UB ₂	85.51
Extreme Out	Extreme Outliers:		liers:										
Low	1	Low	0	Low	1	Low	4	Low	1	Low	3	Low	1
High	0	High	3	High	0	High	6	High	0	High	2	High	0

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

WELL B-10		WELL PP-1A		WELL PP-1B	WELL		S-1D	WELL NES-1S		WELL NES-2D		WELL NES-2DD		
Minimum	75.47	Minimum	27.81	Minimum	27.89	Minimum	53.24	Minimum	53.94	Minimum	27.19	Minimum	27.72	
Maximum	84.11	Maximum	33.22	Maximum	33.12	Maximum	55.48	Maximum	58.77	Maximum	31.23	Maximum	31.84	
Sample Size	185	Sample Size	187	Sample Size	187	Sample Size	/5	Sample Size	78	Sample Size	75	Sample Size	58	
Mean	79.07	Mean	30.93	Mean	30.78	Mean	54.48	Mean	55.34	Mean	29.77	Mean	30.30	
Q1	78.42	Q1	30.62	Q1	30.46	Q1	54.13	Q1	54.91	Q1	29.22	Q1	29.72	
Median	78.92	Median	31.19	Median	30.98	Median	54.42	Median	55.28	Median	29.92	Median	30.42	
Q3	79.87	Q3	31.52	Q3	31.38	Q3	54.79	Q3	55.60	Q3	30.41	Q3	30.98	
IQR	1.45	IQR	0.90	IQR	0.92	IQR	0.66	IQR	0.69	IQR	1.19	IQR	1.26	
LB ₁	76.25	LB ₁	29.27	LB ₁	29.08	LB ₁	53.14	LB ₁	53.87	LB ₁	27.44	LB ₁	27.84	
UB ₁	82.03	UB ₁	32.87	UB ₁	32.76	UB ₁	55.78	UB ₁	56.64	UB ₁	32.20	UB ₁	32.86	
Mild Outliers	:	Mild Outliers:		Mild Outliers:		Mild Outliers:		Mild Outliers	:	Mild Outliers:		Mild Outliers:		
Low	7	Low	15	Low	11	Low	0	Low	0	Low	2	Low	1	
High	5	High	1	High	1	High	0	High	0	High	0	High	0	
LB ₂	74.09	LB ₂	27.92	LB ₂	27.70	LB ₂	52.15	LB ₂	52.83	LB ₂	25.65	LB ₂	25.96	
UB ₂	84.20	UB ₂	34.22	UB ₂	34.14	UB ₂	56.77	UB ₂	57.68	UB ₂	33.98	UB ₂	34.74	
Extreme Out	Extreme Outliers:		Extreme Outliers:											
Low	0	Low	1	Low	0									
High	0	High	0	High	0	High	0	High	1	High	0	High	0	

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

WELL NES-2S		WELL NES-3		WELL NES-4		WELL NES-5		WELL NES-6D		WELL NES-6S		WELL NES-7S		WELL NES-8S	
Minimum	25.24	Minimum	24.32	Minimum	45.93	Minimum	55.30	Minimum	25.30	Minimum	24.00	Minimum	23.77	Minimum	28.25
Maximum	29.70	Maximum	28.74	Maximum	50.74	Maximum	58.64	Maximum	29.39	Maximum	29.40	Maximum	28.15	Maximum	32.90
Sample Size	75	Sample Size	75	Sample Size	76	Sample Size	79	Sample Size	58	Sample Size	58	Sample Size	39	Sample Size	40
Mean	28.21	Mean	27.44	Mean	48.69	Mean	57.23	Mean	28.08	Mean	27.16	Mean	26.76	Mean	31.05
Q1	27.81	Q1	27.10	Q1	47.82	Q1	56.79	Q1	27.76	Q1	26.95	Q1	26.58	Q1	30.30
Median	28.35	Median	27.71	Median	48.96	Median	57.21	Median	28.19	Median	27.26	Median	26.90	Median	31.40
Q3	28.82	Q3	28.03	Q3	49.63	Q3	57.64	Q3	28.55	Q3	27.48	Q3	27.11	Q3	31.93
IQR	1.01	IQR	0.93	IQR	1.81	IQR	0.85	IQR	0.79	IQR	0.53	IQR	0.53	IQR	1.64
LB ₁	26.30	LB ₁	25.71	LB ₁	45.10	LB ₁	55.52	LB ₁	26.58	LB ₁	26.16	LB ₁	25.79	LB ₁	27.84
UB ₁	30.34	UB ₁	29.43	UB ₁	52.35	UB ₁	58.92	UB ₁	29.74	UB ₁	28.28	UB ₁	27.91	UB ₁	34.38
Mild Outlier	s:	Mild Outliers:		Mild Outliers:		Mild Outliers:		Mild Outliers:		Mild Outlier	Mild Outliers:		Mild Outliers:		3 :
Low	5	Low	5	Low	0	Low	1	Low	1	Low	3	Low	1	Low	0
High	0	High	1	High	1	High	0								
LB ₂	24.78	LB ₂	24.31	LB ₂	42.38	LB ₂	54.24	LB ₂	25.39	LB ₂	25.36	LB ₂	24.99	LB ₂	25.39
UB ₂	31.85	UB ₂	30.82	UB ₂	55.07	UB ₂	60.19	UB ₂	30.92	UB ₂	29.07	UB ₂	28.70	UB ₂	36.84
Extreme Outliers:		Extreme Outliers:		Extreme Outliers:		Extreme Outliers:		Extreme Outliers:		Extreme Outliers:		Extreme Outliers:		Extreme Outliers:	
Low	0	Low	0	Low	0	Low	0	Low	1	Low	1	Low	1	Low	0
High	0	High	2	High	0	High	0								

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __12/20/2021__

EXIHIBIT II-C-9. ROSNER'S (GENERALIZED ESD) TEST RESULTS - CRITICAL WELL SET BROWN STATION ROAD SANITARY LANDFILL

WELL A-1 WELL A-11

	Sample Size =	187			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	10/28/2016	57.31	7.854159	3.58523	YES
2	1/16/2012	56.61	9.059145	3.583602	YES
3	8/8/2008	52.02	7.049797	3.581963	YES
4	6/4/2019	43.28	3.185417	3.580313	
5	1/5/2005	48.10	3.203557	3.578653	
6	10/10/2019	43.52	3.025124	3.576983	
7	4/8/2010	47.58	2.632409	3.575301	
8	8/31/2017	43.86	2.662547	3.573609	
9	10/23/2017	43.93	2.622197	3.571906	
10	7/24/2017	43.98	2.60762	3.570191	

	Sample Size =	189			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	10/28/2016	82.02	5.574563	3.588458	YES
2	4/6/2018	81.66	5.873552	3.586849	YES
3	7/24/2017	81.26	6.221511	3.58523	YES
4	11/10/2006	79.01	5.098634	3.583602	YES
5	2/11/2005	67.62	4.923436	3.581963	YES
6	10/10/2019	70.36	2.611089	3.580313	
7	1/29/2018	70.38	2.648681	3.578653	
8	2/12/2018	70.57	2.516126	3.576983	
9	4/8/2010	75.63	2.644188	3.575301	
10	3/21/2013	75.43	2.495231	3.573609	

 WELL A-13
 WELL A-14

 Sample Size =
 189

 Sample Size =
 188

	<u> </u>				
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	11/10/2006	38.43	3.610336	3.588458	YES
2	7/25/2006	38.59	3.554985	3.586849	
3	9/7/2007	38.59	3.692059	3.58523	YES
4	12/7/2007	38.64	3.780078	3.583602	YES
5	3/24/2005	44.19	3.689745	3.581963	YES
6	6/12/2006	38.78	3.870465	3.580313	YES
7	11/7/2007	38.78	4.051273	3.578653	YES
8	1/5/2005	43.95	3.767617	3.576983	YES
9	2/11/2005	43.87	3.807277	3.575301	YES
10	3/24/2014	39.50	3.351585	3.573609	

	Sample Size =	188			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	5/13/2019	44.82	4.193614	3.586849	YES
2	7/25/2011	30.77	2.318215	3.58523	
3	8/15/2011	31.06	2.218178	3.583602	
4	10/29/2020	39.65	1.959824	3.581963	
5	9/11/2006	39.64	1.98112	3.580313	
6	5/4/2006	31.74	1.930191	3.578653	
7	2/12/2018	39.44	1.912518	3.576983	
8	11/14/2018	39.39	1.912244	3.575301	
9	3/4/2019	39.39	1.93741	3.573609	
10	8/14/2020	39.38	1.958457	3.571906	

 WELL A-21
 WELL PP-2A

 Sample Size =
 186

 Sample Size =
 186

	Sample Size =	180			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	12/7/2007	63.27	10.60461	3.583602	YES
2	2/11/2005	49.03	3.970448	3.581963	YES
3	9/11/2006	49.55	3.363718	3.580313	
4	2/4/2019	53.59	2.924539	3.578653	
5	3/4/2019	53.59	3.004358	3.576983	
6	4/8/2010	53.35	2.693179	3.575301	
7	1/17/2019	53.30	2.672647	3.573609	
8	12/5/2018	53.16	2.494983	3.571906	
9	12/14/2020	53.08	2.4076	3.570191	
10	5/15/2014	53.01	2.33132	3.568466	·

	Sample Size =	180			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	6/4/2019	24.41	4.333993	3.583602	YES
2	3/24/2005	31.27	3.734717	3.581963	YES
3	10/10/2019	25.78	3.013186	3.580313	
4	3/24/2014	26.01	2.80351	3.578653	
5	11/25/2009	29.98	2.337983	3.576983	
6	9/16/2019	26.42	2.352616	3.575301	
7	7/6/2018	26.46	2.342569	3.573609	
8	6/15/2017	26.47	2.372491	3.571906	
9	8/13/2014	29.87	2.283171	3.570191	
10	8/31/2017	26.49	2.406491	3.568466	

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __12/20/2021__

WELL PP-2B

WELL PP-6B

	Sample Size =	187			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	6/4/2019	24.44	4.297783	3.58523	YES
2	3/24/2005	31.44	3.679977	3.583602	YES
3	10/10/2019	25.85	2.969536	3.581963	
4	3/24/2014	26.09	2.753416	3.580313	
5	2/6/2006	30.39	2.629251	3.578653	
6	10/29/2009	30.23	2.482069	3.576983	
7	9/22/2017	26.37	2.51511	3.575301	
8	11/25/2009	30.10	2.384601	3.573609	
9	7/6/2018	26.53	2.37374	3.571906	
10	9/16/2019	26.53	2.419177	3.570191	

	Sample Size =	186			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	8/8/2008	46.55	5.378369	3.583602	YES
2	9/22/2017	48.92	3.183226	3.581963	
3	2/12/2018	49.41	2.713136	3.580313	
4	1/29/2018	49.46	2.717933	3.578653	
5	10/10/2019	49.52	2.710258	3.576983	
6	11/30/2017	49.54	2.750305	3.575301	
7	7/24/2017	49.60	2.742888	3.573609	
8	10/23/2017	49.60	2.810531	3.571906	
9	3/15/2018	49.75	2.688037	3.570191	
10	8/31/2017	49.76	2.739406	3.568466	

WELL PP-8

Sample Size = 183

		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	7/30/2015	51.19	2.830058	3.578653	
2	10/29/2020	50.61	2.575783	3.576983	
3	3/4/2019	50.49	2.563071	3.575301	
4	12/14/2020	50.47	2.607001	3.573609	
5	5/13/2019	50.24	2.529512	3.571906	
6	2/4/2019	50.13	2.517579	3.570191	
7	1/17/2019	50.06	2.528633	3.568466	
8	9/11/2020	50.04	2.570995	3.566728	
9	8/14/2020	50.02	2.616091	3.56498	
10	11/24/2020	50.02	2.677039	3.563219	

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __12/20/2021__

EXIHIBIT II-C-10. ROSNER'S (GENERALIZED ESD) TEST RESULTS - OTHER WELLS BROWN STATION ROAD SANITARY LANDFILL

WELL A-2

WELL A-3

187

Sample Size = 187

	Sample Size =	187			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	4/21/2005	26.35	5.055426	3.58523	YES
2	2/4/2019	35.15	3.482071	3.5836	
3	10/10/2019	28.44	3.423219	3.58196	
4	6/4/2019	29.17	2.7589	3.58031	
5	9/9/2016	29.41	2.56183	3.57865	
6	9/16/2019	29.51	2.504835	3.57698	
7	7/24/2017	29.73	2.306852	3.5753	
8	3/1/2010	33.74	2.261276	3.57361	
9	5/4/2006	29.83	2.247097	3.57191	
10	9/16/2015	29.87	2.239138	3.57019	·

	Sample Size =	187			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	9/7/2005	17.71	5.026196	3.58523	YES
2	9/23/2010	18.26	5.049296	3.5836	YES
3	9/11/2020	29.80	2.98151	3.58196	
4	3/4/2019	29.71	2.997652	3.58031	
5	5/13/2019	29.69	3.067562	3.57865	
6	7/9/2019	29.51	3.018199	3.57698	
7	8/14/2020	29.20	2.857658	3.5753	
8	2/12/2018	29.03	2.79416	3.57361	
9	11/14/2018	29.03	2.865454	3.57191	
10	10/29/2020	28.75	2.703968	3.57019	

WELL A-10 WELL A-15
187 Sample Size = 188

	Sample Size =	187			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	9/11/2006	41.97	4.161707	3.58523	YES
2	4/7/2007	42.10	4.325074	3.5836	YES
3	6/1/2007	42.15	4.55204	3.58196	YES
4	10/31/2006	42.26	4.792328	3.58031	YES
5	1/1/2007	42.27	5.135299	3.57865	YES
6	3/7/2007	42.37	5.513938	3.57698	YES
7	12/14/2006	42.57	5.939841	3.5753	YES
8	11/10/2006	43.04	6.320065	3.57361	YES
9	7/8/2008	58.27	4.80754	3.57191	YES
10	10/10/2019	48.88	2.744548	3.57019	

		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	5/4/2006	30.22	5.185062	3.58685	YES
2	4/6/2006	30.70	5.191825	3.58523	YES
3	12/7/2007	31.09	5.255965	3.5836	YES
4	4/8/2008	32.72	4.015869	3.58196	YES
5	9/11/2013	33.06	3.846294	3.58031	YES
6	2/12/2018	39.17	2.903643	3.57865	
7	10/10/2019	34.15	2.831052	3.57698	
8	7/1/2007	34.22	2.821517	3.5753	
9	10/29/2009	38.91	2.757809	3.57361	
10	11/25/2009	38.85	2.752801	3.57191	

 WELL A-17
 WELL A-18

 Sample Size =
 187
 Sample Size =
 187

	Sample Size	101			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	11/10/2006	20.30	9.823367	3.58523	YES
2	7/29/2013	27.90	4.050562	3.5836	YES
3	11/7/2013	28.61	3.260838	3.58196	
4	3/24/2014	28.64	3.325785	3.58031	
5	3/24/2005	33.26	3.403444	3.57865	
6	10/10/2019	29.04	2.916802	3.57698	
7	10/29/2020	32.69	2.698145	3.5753	
8	5/13/2019	32.63	2.667034	3.57361	
9	10/29/2009	32.60	2.681023	3.57191	
10	11/25/2009	32.50	2.580223	3.57019	

		GWE		l _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	11/10/2006	36.25	6.573983	3.58523	YES
2	11/8/2008	25.14	3.660315	3.5836	YES
3	10/10/2019	26.00	2.914425	3.58196	
4	1/5/2005	26.46	2.502516	3.58031	
5	3/24/2014	26.64	2.359015	3.57865	
6	6/4/2019	26.70	2.336964	3.57698	
7	9/16/2019	26.71	2.368664	3.5753	
8	10/23/2017	26.73	2.390844	3.57361	
9	11/7/2013	30.96	2.381242	3.57191	
10	6/15/2017	26.78	2.398668	3.57019	

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __12/20/2021__

WELL A-19

	Sample Size =	187			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	11/10/2006	33.82	4.126238	3.58523	YES
2	12/7/2007	24.62	3.982188	3.5836	YES
3	10/29/2009	32.07	2.855364	3.58196	
4	10/10/2019	26.05	2.868555	3.58031	
5	11/25/2009	31.87	2.776827	3.57865	
6	12/3/2015	31.68	2.655339	3.57698	
7	3/1/2010	31.63	2.665398	3.5753	
8	3/24/2005	31.49	2.582226	3.57361	•
a	3/16/2015	31 22	2 354675	3 57191	

26.79

2.332274

3.57019

	Sample Size =	187			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	4/8/2008	39.30	8.233228	3.58523	YES
2	12/13/2013	33.38	3.855539	3.5836	YES
3	3/4/2019	32.91	3.494125	3.58196	
4	5/13/2019	32.66	3.331163	3.58031	
5	9/11/2020	32.63	3.410445	3.57865	
6	7/9/2019	32.38	3.221758	3.57698	
7	2/12/2018	32.22	3.121882	3.5753	
8	3/24/2014	27.47	3.055124	3.57361	
9	8/14/2020	32.07	3.07752	3.57191	
10	7/1/2005	27.55	3.097176	3.57019	

WELL A-20

WELL A-22 WELL B-1
179 Sample Size = 188

Sample Size =	1/9

10 10/23/2017

		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	12/14/2006	23.43	3.828645	3.57191	YES
2	12/7/2007	23.45	3.812012	3.57019	YES
3	5/4/2006	24.03	3.488854	3.56847	
4	11/10/2006	24.11	3.555505	3.56673	
5	11/7/2007	24.81	3.053906	3.56498	
6	6/12/2006	24.81	3.148663	3.56322	
7	3/24/2006	24.91	3.155249	3.56145	
8	7/25/2006	24.93	3.240641	3.55966	·
9	4/6/2006	24.93	3.355333	3.55787	
10	3/8/2008	25.13	3.270121	3.55606	

		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	5/28/2010	24.93	6.350666	3.58685	YES
2	12/16/2010	25.95	6.590852	3.58523	YES
3	12/27/2005	26.49	7.189845	3.5836	YES
4	9/7/2005	29.89	5.800493	3.58196	YES
5	11/18/2005	30.79	5.648707	3.58031	YES
6	11/14/2018	41.17	3.759615	3.57865	YES
7	10/10/2019	34.34	2.905572	3.57698	
8	12/7/2007	39.64	2.430927	3.5753	
9	7/1/2007	34.94	2.39105	3.57361	
10	10/29/2009	39.53	2.38357	3.57191	

WELL B-2R WELL B-3
Sample Size = 150 Sample Size = 189

		GWE		l _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	9/21/2012	36.17	4.975003	3.51701	YES
2	10/10/2019	37.84	3.791614	3.5149	YES
3	9/16/2019	38.72	3.077329	3.51277	
4	5/13/2019	39.04	2.84527	3.51062	
5	8/26/2019	39.05	2.926979	3.50846	
6	9/16/2015	39.46	2.55892	3.50628	
7	11/14/2019	39.55	2.523469	3.50408	
8	6/11/2020	39.66	2.459942	3.50187	
9	8/8/2008	39.81	2.341267	3.49963	
10	3/24/2014	39.81	2.396885	3.49738	

		GWE		l _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	5/7/2007	46.35	4.645907	3.58846	YES
2	5/4/2006	45.72	4.342815	3.58685	YES
3	7/1/2007	45.63	4.501773	3.58523	YES
4	10/10/2019	38.72	2.655531	3.5836	
5	9/22/2014	38.81	2.616663	3.58196	
6	7/9/2019	38.90	2.574072	3.58031	
7	9/16/2015	39.07	2.437164	3.57865	
8	11/25/2009	43.28	2.341558	3.57698	
9	10/29/2009	43.23	2.326525	3.5753	
10	3/1/2010	43.20	2.333762	3.57361	

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __12/20/2021__

WELL B-4 WELL B-6R

	Sample Size =	189			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	11/10/2006	37.88	10.84912	3.58846	YES
2	10/10/2019	47.98	3.199912	3.58685	
3	3/24/2014	48.10	3.121734	3.58523	
4	9/21/2012	48.19	3.078501	3.5836	
5	10/4/2012	48.26	3.060022	3.58196	
6	7/9/2019	48.43	2.877803	3.58031	
7	10/29/2020	51.88	2.683502	3.57865	
8	2/12/2018	51.85	2.696116	3.57698	
9	8/13/2012	48.63	2.690976	3.5753	
10	10/29/2009	51.80	2.708163	3.57361	

	Sample Size =	181			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	12/8/2008	64.90	6.107994	3.5753	YES
2	11/10/2006	62.45	4.969694	3.57361	YES
3	6/12/2006	61.75	4.782181	3.57191	YES
4	11/7/2007	61.75	5.138976	3.57019	YES
5	12/7/2007	61.75	5.589791	3.56847	YES
6	7/25/2006	61.25	5.650963	3.56673	YES
7	7/1/2005	50.96	5.852241	3.56498	YES
8	1/8/2008	51.42	5.949892	3.56322	YES
9	4/8/2008	51.92	5.96176	3.56145	YES
10	5/8/2008	52.32	6.059975	3.55966	YES

 WELL B-7
 WELL B-8

 Sample Size =
 189
 Sample Size =
 189

- Outriple Oiz		Odmpic Oize	100			
			GWE		I _i at a	
	Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
	1	1/29/2013	65.78	3.442429	3.58846	
	2	3/4/2019	73.19	2.786634	3.58685	
	3	5/13/2019	73.12	2.793105	3.58523	
	4	10/29/2020	72.81	2.585614	3.5836	
	5	11/14/2018	72.73	2.568633	3.58196	
	6	9/11/2020	72.63	2.531436	3.58031	
	7	5/5/2020	72.62	2.57488	3.57865	
	8	8/14/2020	72.60	2.611581	3.57698	
	9	2/4/2019	72.59	2.660179	3.5753	·
	10	4/18/2019	72 54	2 67285	3 57361	

	-	GWE		I _i at a	
		GWE		ı _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	11/7/2013	73.23	4.418427	3.58846	YES
2	8/8/2008	73.27	4.650455	3.58685	YES
3	8/15/2013	73.32	4.919319	3.58523	YES
4	10/29/2020	84.49	4.446784	3.5836	YES
5	11/25/2009	83.59	3.891303	3.58196	YES
6	6/4/2019	75.92	3.275637	3.58031	
7	3/4/2019	82.47	3.066472	3.57865	
8	10/29/2009	82.18	2.86537	3.57698	
9	10/10/2019	76.51	2.898469	3.5753	
10	1/29/2018	76.62	2.861444	3.57361	

 WELL B-9
 WELL PP-1A

 Sample Size =
 189
 Sample Size =
 187

		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	1/17/2014	43.27	12.5105	3.58846	YES
2	1/29/2018	76.68	2.921827	3.58685	
3	10/23/2017	76.92	2.792818	3.58523	
4	11/30/2017	76.95	2.834948	3.5836	
5	9/7/2005	77.08	2.79056	3.58196	
6	7/9/2014	83.29	2.797118	3.58031	
7	8/31/2017	77.57	2.444524	3.57865	
8	9/22/2017	77.62	2.4456	3.57698	
9	3/15/2018	77.64	2.474992	3.5753	
10	10/10/2019	77.66	2.506021	3.57361	

		GWE		l _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	10/10/2019	27.81	3.441506	3.58523	
2	6/4/2019	28.41	2.884742	3.5836	
3	9/16/2019	28.47	2.89059	3.58196	
4	8/31/2017	28.71	2.68267	3.58031	
5	3/24/2005	33.22	2.690563	3.57865	
6	7/6/2018	28.76	2.717268	3.57698	
7	8/26/2019	28.76	2.782384	3.5753	
8	6/11/2020	28.80	2.801482	3.57361	
9	6/15/2017	28.90	2.74342	3.57191	
10	3/24/2014	28.95	2.74531	3.57019	

APPENDIX II-C

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __12/20/2021__

WELL NES-1S

WELL NES-6D

	Sample Size =	68			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	2/20/2017	58.77	9.630671	3.24686	YES
2	10/10/2019	53.94	3.409804	3.24135	YES
3	3/4/2019	56.46	3.393922	3.23573	YES
4	2/4/2019	56.32	3.015937	3.23001	
5	6/13/2018	56.24	2.799946	3.22418	
6	1/17/2019	56.23	2.772947	3.21823	
7	6/6/2018	56.20	2.691951	3.21217	
8	12/14/2020	56.12	2.475959	3.20598	
9	4/18/2019	56.11	2.44896	3.19966	
10	12/5/2018	56.03	2.232969	3.19321	

	Sample Size =	48				
		GWE		I _i at a		
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier	
1	10/10/2019	25.3	7.865678	3.1118	YES	
2	4/25/2016	25.90	6.255303	3.10324	YES	
3	9/9/2016	26.59	4.403371	3.09446	YES	
4	9/16/2019	26.67	4.188654	3.08542	YES	
5	12/14/2020	27.02	3.249268	3.07613	YES	
6	10/23/2017	27.07	3.11507	3.06657	YES	
7	9/11/2020	29.39	3.111715	3.05672	YES	
8	5/13/2019	29.19	2.574924	3.04657		
9	3/4/2019	29.12	2.387046	3.0361		
10	6/13/2016	27.42	2.175685	3.02528		

WELL NES-6S

WELL NES-7S 39

Sample Size =

	Sample Size =	58			
		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	10/10/2019	24.00	3.969957	3.18663	YES
2	9/11/2020	29.40	3.206776	3.1799	YES
3	12/14/2020	29.21	3.280695	3.17302	YES
4	9/16/2019	25.45	3.020952	3.16599	
5	9/9/2016	25.57	3.116711	3.15879	
6	7/6/2018	25.72	3.167292	3.15143	YES
7	7/9/2019	28.42	2.809343	3.14389	
8	6/15/2017	26.22	2.514955	3.13616	
9	10/23/2017	26.27	2.585948	3.12825	
10	6/13/2016	26.28	2.786175	3.12013	

		GWE		I _i at a	
Outlier	Date	(ft-amsl)	R Statistics	5%	Outlier
1	10/10/2019	23.77	4.301384	3.02528	YES
2	9/16/2019	25.22	3.243843	3.01411	YES
3	9/11/2020	28.15	2.999342	3.00255	
4	7/11/2017	25.97	2.350321	2.99059	
5	6/4/2019	26.12	2.167938	2.97818	
6	10/23/2017	26.15	2.281392	2.96532	
7	3/4/2019	27.60	2.2886	2.95195	
8	7/6/2018	26.24	2.330452	2.93805	
9	1/17/2019	26.36	2.146863	2.92357	
10	8/31/2017	26.38	2.294468	2.90847	

APPENDIX II-D

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30__ SHEET NO. _1_ OF __3__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __10/13/2020_

BROWN STATION ROAD SANITARY LANDFILL SOIL BEARING CAPACITY CALCULATIONS

Consideration: To determine the allowable bearing capacity of the foundation soil due to landfill structure, using Terzaghi's Bearing Capacity Equations

Table 10.2

 N_c Bearing Capacity Factor Multipliers for Various Values of B/L (See figure 10.3)

B/L	multiplier		
1 (square)	1.25		
0.5	1.12		
0.2	1.05		
0.0	1.00		
1 (circular)	1.20		

Table 4-2 Bearing-capacity factors for the Terzaghi equations

Values of N_y for ϕ of 34 and 48° are original Terzaghi values and used to back-compute K_{py} for forward computations of N_y by author

φ, deg	N_c	N_q	N_{γ}	K_{p_i}
0	5.7	1.0	0.0	10.8
5	7.3	1.6	0.5	12.2
10	9.6	2.7	1.2	14.7
15	12.9	4.4	2.5	18.6
20	17.7	7.4	5.0	25.0
25	25.1	12.7	9.7	35.0
30	37.2	22.5	19.7	52.0
34	52.6	36.5	36.0	
35	57.8	41.4	42.4	82.0
40	95.7	81.3	100.4	141.0
45	172.3	173.3	297.5	298.0
48	258.3	287.9	780.1	
50	347.5	415.1	1153.2	800.0

Table 10.3
Terzaghi Bearing Capacity Factors
for General Shear³

ϕ	N_c	N_q	N_{γ}
0	5.7	1.0	0.0
5	7.3	1.6	0.5
10	9.6	2.7	1.2
15	12.9	4.4	2.5
20	17.7	7.4	5.0
25	25.1	12.7	9.7
30	37.2	22.5	19.7
34	52.6	36.5	35.0
35	57.8	41.4	42.4
40	95.7	81.3	100.4
45	172.3	173.3	297.5
48	258.3	287.9	780.1
50	347.5	415.1	1153.2

Table 10.4 N_{γ} Multipliers for Various Values of B/L (See figure 10.3)

multiplier
0.85
0.70
0.90
0.95
1.0

Ref.: Michael R. Lindeburg, PE, 4th edition, 1986. Civil Engineering Reference Manual. Professional Publication, Inc., pp. 10-3 & 10-4. (Tables 10-2, 10-3, & 10-4) Joseph E. Bowles. Third Edition, 1982. Foundation Analysis and Design. McGraw-Hill Book Company, pp.131-136. (Table 4-2)

Parameters:

L = longest lateral base dimension of the landfill footprint (ft.)

B = least lateral base dimension of the landfill footprint (ft.)

 p_g = gross (or ultimate) bearing capacity or gross pressure (psf)

 p_{net} = net soil pressure (psf)

FS = factor of safety, FS = 3 (average conditions)

p_a = allowable soil pressure (psf)

 ρ = unit weight of the foundation soil (pcf)

 p_a = surface surcharge (psf)

Ny = bearing capacity factor

APPENDIX II-D

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _2_ OF __3__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __10/13/2020

N_c = bearing capacity factor

N_q = bearing capacity factor

Sy = Ny multiplier

 $S_c = N_c$ multiplier

f = internal friction angle of foundation soil (degrees)

 D_f = depth of overburden soil (ft.)

c = cohesion of the foundation soil (psf)

H_w = maximum waste height (ft.)

 γ_w = unit weight of wet waste (pcf)

 Q_r = Maximum total waste overburden pressure required (psf)

DR = design ratio

Calculate Allowable Bearing Capacity (P a):

Input Data:

APPENDIX II-D

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _3_ OF __3__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE __10/13/2020_

Calculations:

a =	3.351	
$N\gamma =$	19.73	
$N_q =$	1534.48	
$N_c =$	2656.06	
p _g =	732,333 ps	sf
p _{net} =	732,333 ps	sf
p _a =	244,111 ps	sf
$Q_r =$	10,112 ps	sf
DR =	24.1 B	ecause DR is greater than 1.5, the subgrade soil has enough bearing capacity

Results: The design ratio (DR) equals to 24.1 indicating that the soil bearing capacity of the foundation soil is more than adequate to support the weight of the landfill at the maximum waste height of 210 feet.

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ___02201056.30_ SHEET NO. _1_ OF __2__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021_

TABLE E-1 BROWN STATION ROAD SANITARY LANDFILL BL SYSTEM SETTLEMENT ANALYSIS FOR AREA C INFILL (NON-OVERLAPPING AREAS)

ر		Existing	Conceptual	a . (=;;;(1)	Stress Change from	Conceptual	Waste + LSB + Final	Initial Loading on	Total BL	System
ss- tior	Station	Grade	Subgrade	Cut/Fill ⁽¹⁾	Earthwork ⁽²⁾	Final Grade	Cover Loading ^(3,4)	subgrade ⁽⁸⁾	Settleme	ent ^(5,6,7)
Cross- Section	(ft)	(ft)	(ft)	(ft)	(psf)	(ft)	(psf)	(psf)	(ft)	(inch)
	9.8	40.42	55.43	13.01	1432	55.93	399	2,200	0.32	3.8
	39.7	40.42	46.65	4.24	466	64.53	1,235	2,200	0.30	3.6
	100	40.42	47.14	4.72	519	81.82	2,044	2,200	0.41	4.9
	200	40.42	47.60	5.18	570	110.51	3,404	2,200	0.55	6.6
	300	40.42	48.06	5.64	620	139.19	4,763	2,200	0.66	7.9
	400	43.72	48.64	2.92	321	169.87	6,212	2,200	0.73	8.8
	500	44.32	49.25	2.93	322	201.28	7,695	2,200	0.81	9.8
	600	44.48	49.86	3.38	371	230.42	9,068	2,200	0.88	10.6
	700	44.66	50.47	3.81	419	235.13	9,266	2,200	0.89	10.7
	800	46.05	51.08	3.03	333	239.85	9,463	2,200	0.90	10.8
	900	47.91	51.69	1.78	196	244.44	9,655	2,200	0.90	10.8
	1000	49.46	52.30	0.85	93	248.98	9,844	2,200	0.90	10.9
Ψ	1100	50.06	52.71	0.66	72	253.52	10,043	2,200	0.91	11.0
Section A-A'	1167.7	48.91	52.79	1.88	207	256.59	10,187	2,200	0.92	11.1
l iż	1176.2	48.98	56.80	5.82	641	256.98	10,013	2,200	0.94	11.2
Sec	1184.4	49.04	52.81	1.77	195	257.35	10,223	2,200	0.93	11.1
1	1200	49.08	52.90	1.82	201	258.06	10,253	2,200	0.93	11.1
	1243.3	49.01	53.30	2.29	252	260.02	10,328	2,200	0.93	11.2
	1300	49.32	53.83	2.51	276	260.02	10,303	2,200	0.93	11.2
	1400	49.25	54.75	3.50	385	260.02	10,258	2,200	0.93	11.2
	1500	43.93	55.68	9.75	1072	260.02	10,213	2,200	0.96	11.5
	1600	45.24	56.60	9.37	1030	260.02	10,169	2,200	0.96	11.5
	1622.3	47.52	56.81	7.29	802	260.02	10,159	2,200	0.95	11.4
	1700	59.81	58.81	-3.00	-330	256.78	9,907	2,200	0.89	10.7
	1800	64.78	63.78	-3.00	-330	252.74	9,473	2,200	0.87	10.4
	1900	68.29	67.29	-3.00	-330	248.85	9,116	2,200	0.85	10.2
	2000	69.00	68.00	-3.00	-330	245.04	8,899	2,200	0.84	10.1
	2100	70.85	69.85	-3.00	-330	241.13	8,622	2,200	0.83	9.9
ģ										
n B-	1000	70.63	63.46	-9.17	-1009	245.61	9,145	2,200	0.82	9.8
Section B-B'	1100	67.22	61.04	-8.18	-900	245.85	9,273	2,200	0.83	10.0

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ___02201056.30_ SHEET NO. _2_ OF __2_ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE 10/13/2020, Revised 5/21/2021

Cross- Section		Existing	Conceptual	Cut/Fill ⁽¹⁾	Stress Change from	Conceptual	Waste + LSB + Final	Initial Loading on	Total BL	
cti	Station	Grade	Subgrade	(ft)	Earthwork ⁽²⁾	Final Grade	Cover Loading ^(3,4)	subgrade ⁽⁸⁾	Settleme	ent
Cross- Sectio	(ft)	(ft)	(ft)	()	(psf)	(ft)	(psf)	(psf)	(ft)	(inch)
	900	43.00	49.20	4.20	462	235.69	9,354	2,200	0.90	10.8
	1000	39.67	47.27	5.59	615	236.75	9,498	2,200	0.91	10.9
	1100	40.31	48.17	5.86	645	237.76	9,503	2,200	0.91	11.0
	1200	41.13	49.34	6.20	682	238.97	9,505	2,200	0.92	11.0
	1300	45.96	50.50	2.54	280	240.70	9,532	2,200	0.90	10.8
65	1400	46.34	51.66	3.32	366	242.91	9,583	2,200	0.91	10.9
ပ်	1500	46.71	52.89	4.18	459	245.11	9,630	2,200	0.91	10.9
Section	1578.0	46.33	53.85	5.52	607	244.72	9,565	2,200	0.91	11.0
इं	1588.6	46.61	57.99	9.38	1032	244.95	9,376	2,200	0.92	11.1
Ň	1599.2	46.60	54.11	5.51	606	245.17	9,574	2,200	0.92	11.0
	1600	46.60	54.12	5.52	608	245.19	9,574	2,200	0.92	11.0
	3100	44.90	54.59	7.69	846	258.87	10,210	2,200	0.95	11.4
	3200	48.99	52.83	1.84	202	256.47	10,179	2,200	0.92	11.1
	3279.7	58.90	58.41	-2.49	-274	254.18	9,801	2,200	0.89	10.6
	3290.7	58.32	57.99	-2.33	-257	253.86	9,805	2,200	0.89	10.7

BL, psf, ft, and in are bottom liner, pounds per square foot, and foot (feet), and inch (inches), respectively.

Notes:

(1) Cut/fill is from bottom of liner subbase grade. Assume 2.0 feet thick bottom liner subbase.

(2) Assume soil density final cover and liner subbase =	110	pcf [Maximum dry density of ML-CL, material recommended for
		subbase, was 125.4 pcf (Table 3.2, Attachment 2)]

(3) Assume inplace density of new waste = 1,300 pcy [SCS Estimate]

(4) Assume 2.5 feet final cover

(5) Assume subgrade material density = 110 pcf [Maximum dry density of SC (clayey sand), material recommended as subgrade, was 124.4 pcf (Table 3.2, Attachment 2) and G was 2.64]

 $^{(6)}$ Assume void ratio of subgrade material (e) = 0.47 and G \cong 2.6

Compression Index for subgrade material (C_c) = 0.045 (Basic Soil Engineering, B.K.Hough, 1969)

(8) Estimate settlement for 40 feet of subgrade material below landfill base.

(9) Liner is conservatively located at the lowest possible location for maximum possible waste load and BL system settlement.

(Primary) Settlement:

$$\Delta H = H \frac{C_c}{1+e} \log \left[1 + \frac{P}{p_i} \right]$$
 [Sowers Model (1973)]

where; ΔH = Settlement, ft

H =Soil depth which will settle, ft

P = Stress change from earthwork + (waste, LSB and final cover) loading [= cut/fill height * soil density + (waste + final cover) * waste density]

p_i = Initial loading at center of soil column, pcf (= soil column height/2*soil density)

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ___02201056.30__ SHEET NO. _1_ OF __3__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021_

TABLE E-2 BROWN STATION ROAD SANITARY LANDFILL BL SYSTEM SETTLEMENT ANALYSIS FOR AREA C INFILL (OVERLAPPING AREAS)

	Station (ft)	Average Ground Elevation (ft)	Conceptual Subgrade (ft)	Thickness of Existing Waste ⁽¹⁾ (ft)	Stress at Center of Existing Waste ⁽²⁾ (psf)	Conceptual Final Grade (ft)	Thickness of New Waste ⁽³⁾ (ft)	New Waste Load at Center of Existing Waste ⁽⁴⁾ (psf)	Primary BL System Settlement ^(5 to 8) (ft)	Median Fill Age (t ₁) ^(9,10) (Years)	t ₂ Age ⁽¹¹⁾ (Years)	Secondary BL System Settlement ⁽⁹⁾ (ft)	Total BL System Settlement (ft)	Percent Change in Thickness
	1200	67.22	66.95	9.73	250	246.09	179.14	8,625	2.9	45	65	0.04	3.0	30.4%
	1287.7	67.22	81.18	23.96	615	246.16	164.98	7,943	5.3	45	65	0.12	5.4	22.5%
	1298.2	67.22	80.03	22.81	585	246.18	166.15	8,000	5.1	45	65	0.11	5.2	23.0%
	1600	67.22	112.37	55.14	1,414	249.08	136.71	6,582	8.0	45	65	0.30	8.3	15.0%
	1646.1	67.22	113.44	56.21	1,442	249.82	136.38	6,566	8.1	45	65	0.30	8.4	14.9%
	1695	67.22	119.82	62.59	1,605	250.89	131.07	6,311	8.4	45	65	0.34	8.7	13.9%
	1700	67.22	118.32	61.10	1,567	251.01	132.69	6,389	8.3	45	65	0.33	8.6	14.2%
	1709	67.22	115.88	58.65	1,504	251.20	135.32	6,515	8.2	45	65	0.32	8.5	14.6%
	1800	67.22	117.51	60.29	1,546	253.21	135.70	6,534	8.3	45	65	0.33	8.7	14.4%
	1900	67.22	122.71	65.48	1,680	255.41	132.70	6,389	8.6	45	65	0.36	9.0	13.7%
	1928.5	66.44	123.73	67.29	1,726	256.04	132.30	6,370	8.7	45	65	0.37	9.1	13.5%
	1955.6	65.70	129.39	73.70	1,890	256.64	127.24	6,127	8.9	45	65	0.41	9.3	12.7%
	2108	61.51	137.96	86.44	2,217	260.02	122.06	5,877	9.4	45	65	0.48	9.9	11.4%
=_	2132.3	60.84	140.41	89.57	2,297	260.02	119.61	5,759	9.4	45	65	0.50	9.9	11.1%
8	2200	58.98	146.47	97.49	2,500	257.36	110.88	5,339	9.3	45	65	0.55	9.9	10.1%
Section B-B'	2225.4	58.29	147.10	98.81	2,534	256.35	109.26	5,260	9.3	45	65	0.56	9.9	10.0%
Sect	2251	57.57	150.60	103.03	2,643	255.38	104.78	5,045	9.2	45	65	0.59	9.8	9.5%
"	2264	57.22	146.69	99.46	2,551	254.93	104.76	5,212	9.3	45	65	0.57	9.8	9.9%
	2300	56.24	145.08	98.84	2,535	253.68	108.60	5,229	9.3	45	65	0.56	9.8	9.9%
	2400	53.49	140.36	96.87	2,485	249.92	109.56	5,275	9.2	45	65	0.55	9.8	10.1%
	2500	50.75	134.63	93.88	2,408	246.12	111.50	5,368	9.2	45	65	0.53	9.7	10.4%
	2600	48.00	127.36	89.36	2,292	242.75	115.38	5,556	9.2	45	65	0.50	9.7	10.9%
	2700	48.00	121.35	83.35	2,138	239.98	118.63	5,712	9.1	45	65	0.47	9.5	11.5%
	2800	48.00	114.20	76.20	1,954	238.03	123.83	5,962	8.9	45	65	0.42	9.4	12.3%
	2900	48.00	106.46	68.46	1,756	236.27	129.82	6,250	8.7	45	65	0.37	9.1	13.3%
	3000	48.00	100.77	62.77	1,610	234.81	134.04	6,454	8.5	45	65	0.34	8.8	14.0%
	3013.5	48.00	100.21	62.21	1,596	234.61	134.40	6,471	8.4	45	65	0.34	8.8	14.1%
	3021.9	48.00	103.90	65.90	1,690	234.49	130.59	6,288	8.6	45	65	0.36	8.9	13.5%
	3030	48.00	99.61	61.61	1,580	234.37	134.76	6,488	8.4	45	65	0.33	8.7	14.2%
	3100	48.00	96.86	58.86	1,510	233.35	136.49	6,572	8.3	45	65	0.32	8.6	14.6%
	3200	48.00	97.09	59.09	1,516	231.41	134.31	6,467	8.2	45	65	0.32	8.5	14.5%
	3260.2	48.00	99.16	61.16	1,569	230.02	130.86	6,300	8.3	45	65	0.33	8.6	14.0%
	3300	48.00	100.56	62.56	1,605	223.91	123.35	5,939	8.1	45	65	0.34	8.5	13.5%

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30__ SHEET NO. _2_ OF __3__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021_

		Average	0	Thickness of	Stress at Center of	0	Thickness	New Waste Load at Center	Primary BL System	Median Fill		Secondary BL	Total BL	Davaant
		Ground	Conceptual Subgrade	Existing	Existing	Conceptual Final Grade	of New	of Existing	Settlement ^(5 to 8)	Age (t ₁) ^(9,10)	t ₂ Age ⁽¹¹⁾	System	System	Percent Change in
	Station	Elevation	(ft)	Waste ⁽¹⁾	Waste ⁽²⁾	(ft)	Waste ⁽³⁾	Waste ⁽⁴⁾			(Years)	Settlement ⁽⁹⁾	Settlement	Thickness
	(ft)	(ft)	(10)	(ft)		(10)	(ft)	(psf)	(ft)	(Years)		(ft)	(ft)	IIIICKIICSS
	3400	48.00	102.53	64.53	(psf) 1,655	206.70	104.17	5,016	7.5	45	65	0.36	7.9	12.2%
Section B-B'	3500	48.00	107.50	69.50	1,782	183.26	75.77	3,648	6.5	45	65	0.40	6.9	9.9%
꿃첉	3600	48.00	113.20	75.20	1,929	162.09	48.88	2,354	5.0	45	65	0.44	5.5	7.3%
ŭ	3700	48.00	118.05	80.05	2,053	139.50	21.45	1,033	2.7	45	65	0.49	3.2	4.0%
	31.8	59.2	152.7	103.52	2,655	153.2	0.50	24	0.1	45	65	0.65	0.7	0.7%
	45.0	61.9	147.5	95.63	2,453	156.3	8.76	422	1.3	45	65	0.59	1.9	1.9%
	48.8	58.5	148.3	99.89	2,562	157.1	8.79	423	1.3	45	65	0.62	1.9	1.9%
	100	57.8	147.5	99.73	2,558	169	21.35	1,028	2.8	45	65	0.61	3.4	3.4%
	200	56.1	143.3	97.14	2,491	189	45.84	2,207	5.2	45	65	0.58	5.7	5.9%
	300	58.5	130.4	81.97	2,102	206	75.78	3,649	6.9	45	65	0.47	7.4	9.0%
	400	56.3	115.4	69.08	1,772	224	108.86	5,241	8.0	45	65	0.38	8.3	12.1%
	500	54.2	99.0	54.74	1,404	232	133.35	6,421	7.9	45	65	0.29	8.2	14.9%
	541.3	52.8	90.7	47.89	1,228	233.1	142.38	6,856	7.6	45	65	0.25	7.8	16.3%
	555.1	52.7	94.8	52.05	1,335	233.2	138.37	6,662	7.8	45	65	0.28	8.1	15.5%
	565.0	52.5	90.3	47.80	1,226	233.2	142.94	6,882	7.6	45	65	0.25	7.8	16.4%
	600	51.6	84.9	43.29	1,110	233	148.54	7,152	7.3	45	65	0.23	7.5	17.3%
	700	48.5	63.9	25.41	652	234	170.13	8,192	5.5	45	65	0.12	5.7	22.3%
	800	40.0	51.1	21.13	542	235	183.60	8,840	5.0	45	65	0.10	5.1	24.4%
	1700	46.0	58.9	22.89	587	247	188.45	9,073	5.4	45	65	0.11	5.5	23.9%
	1800	46.3	77.9	41.63	1,068	249	171.54	8,260	7.6	45	65	0.21	7.8	18.7%
ڹ	1900	46.6	94.7	58.06	1,489	252	156.94	7,556	8.8	45	65	0.31	9.1	15.6%
၂ ပ	2000	46.9	105.2	68.28	1,751	254	148.53	7,151	9.3	45	65	0.37	9.7	14.2%
Section C-C	2100	47.2	115.6	78.38	2,010	256	140.24	6,752	9.7	45	65	0.43	10.1	12.9%
l š	2200	47.5	127.1	89.55	2,297	257	129.93	6,256	9.9	45	65	0.50	10.4 10.4	11.6%
"	2300 2398.2	47.8 48.1	137.8 146.4	99.95 108.28	2,564 2,777	257 256.4	118.89 109.97	5,724	9.8 9.7	45 45	65 65	0.57 0.62	10.4	10.4% 9.5%
		48.1			2,777		109.97	5,295 5,250		45 45	65			
	2400 2406.2	48.2	147.3 150.5	109.19 112.28	2,880	256 256.4	109.05	5,250	9.7 9.6	45 45	65	0.62 0.64	10.3 10.2	9.4% 9.1%
	2414.1	48.2	146.5	108.34	2,779	256.4	105.90	5,099	9.6	45	65	0.62	10.2	9.1%
	2500	48.5	140.0	100.34	2,605	256.5	116.34	5,601	9.8	45	65	0.62	10.3	10.2%
	2522.5	48.5	137.5	98.94	2,538	256.4	118.91	5,725	9.8	45	65	0.56	10.3	10.5%
	2528.8	48.6	140.4	101.88	2,613	256.4	115.95	5,583	9.8	45	65	0.58	10.3	10.3%
	2540.7	48.6	134.6	96.04	2,463	256.4	121.76	5,862	9.8	45	65	0.54	10.3	10.8%
	2600	48.8	124.5	85.69	2,198	257	132.12	6,361	9.8	45	65	0.48	10.3	11.9%
	2700	49.1	112.2	73.12	1,875	257	145.27	6,995	9.5	45	65	0.40	9.9	13.6%
	2732.0	49.2	107.2	68.00	1,744	257.7	150.57	7,250	9.3	45	65	0.37	9.7	14.3%
	2738.1	49.2	110.1	70.95	1,820	257.8	147.66	7,109	9.5	45	65	0.39	9.8	13.9%
	2750.3	49.2	104.2	64.98	1,667	257.9	153.70	7,401	9.2	45	65	0.35	9.6	14.7%
	2800	49.4	97.1	57.74	1,481	258	161.22	7,763	8.9	45	65	0.31	9.2	15.9%
	2900	49.7	80.0	40.27	1,033	259	178.89	8,613	7.5	45	65	0.21	7.7	19.2%
	3000	50.0	64.9	24.92	639	259	193.66	9,324	5.7	45	65	0.12	5.9	23.5%

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

JOB NO. 02201056.30 SHEET NO. _3_ OF __3__ CALCULATED BY: GRI CHECKED BY: BSP DATE 10/13/2020, Revised 5/21/2021

	Station (ft)	Average Ground Elevation (ft)	Conceptual Subgrade (ft)	Thickness of Existing Waste ⁽¹⁾ (ft)	Stress at Center of Existing Waste ⁽²⁾ (psf)	Conceptual Final Grade (ft)	Thickness of New Waste ⁽³⁾ (ft)	New Waste Load at Center of Existing Waste ⁽⁴⁾ (psf)	Primary BL System Settlement ^(5 to 8) (ft)	Median Fill Age (t ₁) ^(9,10) (Years)	t ₂ Age ⁽¹¹⁾ (Years)	Secondary BL System Settlement ⁽⁹⁾ (ft)	Total BL System Settlement (ft)	Percent Change in Thickness
_	3100	44.9	54.6	19.69	505	259	204.27	9,835	5.0	45	65	0.09	5.1	25.8%
ું હું	3200	49.0	52.8	13.84	355	256	203.64	9,805	3.9	45	65	0.06	4.0	28.5%
၂ ရွိ ပ	3279.7	58.9	58.4	9.51	244	254.2	195.77	9,426	2.9	45	65	0.04	3.0	31.3%
S	3290.7	58.3	58.0	9.67	248	253.9	195.87	9,431	3.0	45	65	0.04	3.0	31.1%

BL, psf, ft, and in are bottom liner, pounds per square foot and foot (feet), and inch (inches), respectively.

Notes:

 $^{(1)}$ Assume landfill base below average ground elevation \cong

ft

(2) Assume inplace density of existing waste is

pcy [SCS Estimate]

(3) Assume 2.0 feet bottom liner base and 2.5 feet final cover.

(4) Assume inplace density of new waste =

pcy [SCS Estimate]

(5) Assume waste void ratio (e) =

(estimated based on age of waste)

 $^{(6)}$ Initial (Primary) Compression Index (C_C) =

0.54 (low-middle value; Sowers, 1970)

(7) Secondary Compression Index (C_S) =

0.11 (low-middle value; Sowers, 1970)

(8) Primary compression will occur over the time new waste is placed, followed by secondary compression.

(9) Assume average date of waste placement is =

1980

[Area A opened in 1968 and was closed in 1992]

(10) Year when BL system will be installed

2025

(11) Assume t₂ extends to

20 years beyond t1

(12) Liner is conservatively located at the lowest possible location for maximum possible waste load and BL system settlement.

Primary Settlement of Existing Waste (Due to Weight of Liner Subbase+New Waste+Final Cover):

$$\Delta H_P = H \frac{C_c}{1+e} \log \left[1 + \frac{\Delta P}{p_i} \right]$$
 [Sowers Model (1973)]

where: $\Delta H_P = \text{Primary settlement, ft}$

H = Height of existing waste including final cover, ft

 ΔP = Load due to new waste, pcf [= new waste height*new waste density]

p_i = Original loading at center of existing waste, pcf [= existing waste height/2*existing waste density]

Secondary Settlement of Existing Waste (Due to Self Weight and Decomposition of the Existing Waste):

$$\Delta H_S = H \frac{C_S}{1+e} \log \left[\frac{t_2}{t_1} \right]$$
 [Sowers Model (1973)]

where; ΔH_S = Secondary settlement, ft

t₁ = Existing waste age at the time of installing BL system [=year when BL system is installed - average date of waste placement]

t₂ = Existing waste age at the time of installing BL system plus time elapsed after installing BL system

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30__ SHEET NO. _1_ OF __4__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021_

TABLE E-3 BROWN STATION ROAD SANITARY LANDFILL

BOTTOM LINER ELONGATION ANALYSIS FOR AREA C INFILL (OVERLAPPING AND NON-OVERLAPPING AREAS)

		Total BL System	BL Elevation (Pre-	BL Elevation (Post-	Horizontal Distance	BL Length (Pre-	BL Length (Post-	Change in BL		Change in BL		Settlement BL
SS-	Station	Settlement (1)	Settlement) (2)	Settlement) (2)	Between Stations	Settlement)	Settlement)	Length (ft)	Comment (3)	Length (4)	Siop	oe (%)
Cross- Section	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(11)		(%)	Pre-	Post
	9.8	0.32	55.43	55.11								
	39.7	0.30	46.65	46.35	29.95	31.213	31.208	-0.01	Compression	-0.03%	-28.13%	-28.07%
	100	0.41	47.14	46.73	60.28	60.287	60.286	0.00		0.00%	0.80%	0.63%
	200	0.55	47.60	47.05	100.00	100.001	100.001	0.00		0.00%	0.46%	0.32%
	300	0.66	48.06	47.40	100.00	100.001	100.001	0.00		0.00%	0.46%	0.35%
	400	0.73	48.64	47.91	100.00	100.002	100.001	0.00		0.00%	0.58%	0.51%
	500	0.81	49.25	48.43	100.00	100.002	100.001	0.00		0.00%	0.61%	0.53%
	600	0.88	49.86	48.98	100.00	100.002	100.001	0.00		0.00%	0.61%	0.54%
	700	0.89	50.47	49.58	100.00	100.002	100.002	0.00		0.00%	0.61%	0.60%
	800	0.90	51.08	50.18	100.00	100.002	100.002	0.00		0.00%	0.61%	0.61%
	900	0.90	51.69	50.79	100.00	100.002	100.002	0.00		0.00%	0.61%	0.61%
	1000	0.90	52.30	51.40	100.00	100.002	100.002	0.00		0.00%	0.61%	0.61%
<u>-</u>	1100	0.91	52.71	51.80	100.00	100.001	100.001	0.00		0.00%	0.41%	0.40%
Section A-A'	1167.7	0.92	52.79	51.87	67.72	67.716	67.716	0.00		0.00%	0.11%	0.09%
) ji	1176.2	0.94	56.80	55.87	8.47	9.368	9.363	-0.01	Compression	-0.11%	42.81%	42.71%
ŭ	1184.4	0.93	52.81	51.88	8.24	9.152	9.148	0.00		0.00%	-43.62%	-43.53%
	1200	0.93	52.90	51.97	15.58	15.582	15.582	0.00		0.00%	0.58%	0.57%
	1243.3	0.93	53.30	52.37	43.25	43.257	43.257	0.00		0.00%	0.93%	0.91%
	1300	0.93	53.83	52.89	56.75	56.747	56.747	0.00		0.00%	0.93%	0.93%
	1400.0	0.93	54.75	53.82	100.00	100.004	100.004	0.00		0.00%	0.93%	0.92%
	1500	0.96	55.68	54.72	100.00	100.004	100.004	0.00		0.00%	0.93%	0.90%
	1600	0.96	56.60	55.65	100.00	100.004	100.004	0.00		0.00%	0.93%	0.93%
	1622.3	0.95	56.81	55.86	22.29	22.288	22.288	0.00		0.00%	0.93%	0.97%
	1700	0.89	58.81	57.92	77.71	77.739	77.740	0.00		0.00%	2.57%	2.65%
	1800	0.87	63.78	62.91	100.00	100.123	100.124	0.00		0.00%	4.96%	4.98%
	1900	0.85	67.29	66.43	100.00	100.061	100.062	0.00		0.00%	3.51%	3.52%
	2000	0.84	68.00	67.16	100.00	100.003	100.003	0.00		0.00%	0.71%	0.73%
	2100	0.83	69.85	69.02	100.00	100.017	100.017	0.00		0.00%	1.85%	1.86%

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ___02201056.30_ SHEET NO. _2_ OF __4__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021_

Cross- Section	Station	Total BL System Settlement (1) (ft)	BL Elevation (Pre- Settlement) (2)	BL Elevation (Post- Settlement) (2)	Horizontal Distance Between Stations (ft)	BL Length (Pre- Settlement) (ft)	BL Length (Post- Settlement)	Change in BL Length (ft)	Comment ⁽³⁾	Length ⁽⁴⁾	Pre- and Post- Slop	Settlement BL e (%)
Sec	(ft)		(ft)	(ft)	(10)	(11)	(ft)	(10)		(%)	Pre-	Post
	1000	0.82	63.46	62.64								
	1100	0.83	61.04	60.21	100.00	100.029	100.029	0.00		0.00%	-2.42%	-2.43%
	1200	2.95	66.95	64.00	100.10	100.279	100.177	-0.10	Compression	-0.10%	5.89%	3.78%
	1288	5.40	81.18	75.78	87.64	88.786	88.426	-0.36	Compression	-0.41%	16.03%	13.32%
	1298	5.24	80.03	74.79	10.45	10.508	10.492	-0.02	Compression	-0.19%	-10.96%	-9.45%
	1600	8.30	112.37	104.07	301.81	303.539	303.229	-0.31	Compression	-0.10%	10.65%	9.66%
	1646	8.37	113.44	105.06	46.06	46.072	46.071	0.00		0.00%	2.32%	2.15%
	1695	8.71	119.82	111.11	48.61	49.031	48.989	-0.04	Compression	-0.08%	13.01%	12.35%
	1700	8.65	118.32	109.67	5.33	5.533	5.517	-0.02	Compression	-0.36%	-27.10%	-26.09%
	1709	8.54	115.88	107.34	8.67	9.010	8.982	-0.03	Compression	-0.33%	-27.10%	-25.99%
	1800	8.68	117.51	108.84	91.33	91.342	91.339	0.00		0.00%	1.79%	1.64%
	1900	8.96	122.71	113.74	100.00	100.135	100.120	-0.02	Compression	-0.02%	5.19%	4.90%
	1928	9.08	123.73	114.66	28.47	28.493	28.489	0.00		0.00%	3.61%	3.21%
	1956	9.33	129.39	120.07	27.11	27.695	27.645	-0.05	Compression	-0.18%	20.44%	19.58%
	2108	9.86	137.96	128.10	152.29	152.529	152.500	-0.03	Compression	-0.02%	5.61%	5.26%
	2132	9.92	140.41	130.50	24.45	24.573	24.567	-0.01	Compression	-0.04%	9.99%	9.77%
	2200	9.88	146.47	136.59	67.68	67.948	67.951	0.00		0.00%	8.92%	8.97%
m	2225	9.86	147.10	137.24	25.42	25.432	25.432	0.00		0.00%	2.46%	2.55%
Section B-B'	2251	9.80	150.60	140.80	26.04	26.277	26.285	0.01	Tension	0.04%	13.32%	13.54%
ĕ	2264	9.84	146.69	136.85	12.74	13.328	13.338	0.01	Tension	0.08%	-29.37%	-29.60%
ect	2300	9.83	145.08	135.25	35.79	35.829	35.829	0.00		0.00%	-4.49%	-4.47%
S	2400	9.79	140.36	130.57	100.00	100.111	100.109	0.00		0.00%	-4.71%	-4.67%
	2500	9.75	134.63	124.88	100.00	100.164	100.162	0.00		0.00%	-5.72%	-5.68%
	2600	9.71	127.36	117.65	100.00	100.263	100.261	0.00		0.00%	-7.24%	-7.21%
	2700	9.55	121.35	111.81	100.00	100.181	100.171	-0.01	Compression	-0.01%	-6.00%	-5.83%
	2800	9.35	114.20	104.85	100.00	100.256	100.242	-0.01	Compression	-0.01%	-7.14%	-6.94%
	2900	9.07	106.46	97.38	100.00	100.299	100.278	-0.02	Compression	-0.02%	-7.72%	-7.44%
	3000	8.81	100.77	91.96	100.00	100.162	100.147	-0.02	Compression	-0.02%	-5.68%	-5.42%
	3013	8.78	100.21	91.43	13.47	13.477	13.475	0.00		0.00%	-4.15%	-3.93%
	3022	8.93	103.90	94.98	8.41	9.186	9.130	-0.06	Compression	-0.65%	40.19%	38.86%
	3030	8.75	99.61	90.86	8.12	9.183	9.102	-0.08	Compression	-0.87%	-46.71%	-45.17%
	3100	8.59	96.86	88.27	70.00	70.057	70.051	-0.01	Compression	-0.01%	-3.93%	-3.70%
	3200	8.54	97.09	88.55	100.00	100.000	100.000	0.00		0.00%	0.23%	0.28%
	3260	8.59	99.16	90.57	60.21	60.242	60.240	0.00		0.00%	3.44%	3.36%
	3300	8.45	100.56	92.11	39.79	39.819	39.824	0.00		0.00%	3.52%	3.87%
	3400	7.89	102.53	94.64	100.00	100.019	100.032	0.01	Tension	0.01%	1.97%	2.53%
	3500	6.88	107.50	100.62	100.00	100.123	100.178	0.05	Tension	0.05%	4.96%	5.96%
	3600	5.46	113.20	107.74	100.00	100.163	100.253	0.09	Tension	0.09%	5.70%	7.11%
	3700	3.22	118.05	114.83	100.00	100.117	100.251	0.13	Tension	0.13%	4.84%	7.07%

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ___02201056.30_ SHEET NO. _3_ OF __4__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021_

		Total BL System	BL Elevation	BL Elevation	Horizontal Distance	BL Length (Pre-	BL Length	Change in BL		Change in BL	Pre- and Post-	Settlement BL
. 5		Settlement (1)	(Pre-	(Post-	Between Stations	Settlement)	(Post-	Length	Comment (3)	Length (4)		pe (%)
Cross- Section	Station	(ft)	Settlement) (2)	Settlement) (2)	(ft)	(ft)	Settlement)	(ft)	Commone	(%)	0.0,	(/0)
င် တိ	(ft)		(ft)	(ft)	(-7	(1.4)	(ft)	(. 4		(7-7)	Pre-	Post
	31.8	0.73	152.72	152.00								
	45.0	1.86	147.50	145.64	13.21	14.205	14.660	0.46	Tension	3.24%	-36.75%	-43.36%
	48.8	1.90	148.35	146.45	3.80	3.891	3.884	-0.01	Compression	-0.26%	21.64%	20.78%
	100.0	3.43	147.55	144.12	51.19	51.195	51.242	0.05	Tension	0.10%	-1.56%	-4.55%
	200.0	5.74	143.27	137.53	100.00	100.091	100.217	0.13	Tension	0.13%	-4.27%	-6.57%
	300.0	7.38	130.43	123.05	100.00	100.822	101.044	0.22	Tension	0.22%	-12.74%	-14.34%
	400.0	8.34	115.42	107.08	100.00	101.119	101.267	0.15	Tension	0.15%	-14.84%	-15.77%
	500.0	8.17	98.95	90.78	100.00	101.347	101.319	-0.03	Compression	-0.03%	-16.25%	-16.09%
	541.3	7.81	90.69	82.88	41.30	42.115	42.046	-0.07	Compression	-0.17%	-19.63%	-18.80%
	555.1	8.08	94.78	86.70	13.78	14.376	14.302	-0.07	Compression	-0.49%	28.48%	26.73%
	565.0	7.82	90.28	82.46	9.93	10.904	10.797	-0.11	Compression	-1.01%	-41.28%	-39.22%
	600.0	7.50	84.89	77.39	34.99	35.404	35.358	-0.05	Compression	-0.14%	-15.23%	-14.36%
	700.0	5.67	63.91	58.23	100.00	102.177	101.817	-0.36	Compression	-0.35%	-20.53%	-18.81%
	800.0	5.15	51.13	45.99	100.00	100.813	100.747	-0.07	Compression	-0.07%	-12.67%	-12.16%
	900.0	0.90	49.20	48.30	100.00	100.019	100.027	0.01	Tension	0.01%	-1.93%	2.32%
	1000.0	0.91	47.27	46.36	100.00	100.019	100.019	0.00		0.00%	-1.93%	-1.95%
	1100.0	0.91	48.17	47.26	100.00	100.004	100.004	0.00		0.00%	0.91%	0.90%
_	1200.0	0.92	49.34	48.42	100.00	100.007	100.007	0.00		0.00%	1.16%	1.16%
Section C-C'	1300.0	0.90	50.50	49.60	100.00	100.007	100.007	0.00		0.00%	1.16%	1.18%
٦	1400.0	0.91	51.66	50.76	100.00	100.007	100.007	0.00		0.00%	1.16%	1.16%
∺	1500.0	0.91	52.89	51.98	100.00	100.008	100.007	0.00		0.00%	1.23%	1.22%
Se	1578.0	0.91	53.85	52.93	78.03	78.040	78.040	0.00		0.00%	1.23%	1.23%
	1588.6	0.92	57.99	57.06	10.55	11.329	11.325	0.00		0.00%	36.52%	36.45%
	1599.2	0.92	54.11	53.19	10.64	11.326	11.323	0.00		0.00%	-34.23%	-34.15%
	1600.0	0.92	54.12	53.20	0.78	0.778	0.778	0.00		0.00%	1.23%	1.22%
	1700.0	5.48	58.89	53.41	100.00	100.114	100.000	-0.11	Compression	-0.11%	4.76%	0.21%
	1800.0	7.77	77.94	70.17	100.00	101.798	101.394	-0.40	Compression	-0.39%	18.71%	16.53%
	1900.0	9.08	94.68	85.60	100.00	101.392	101.183	-0.21	Compression	-0.21%	16.51%	15.25%
	2000.0	9.67	105.21	95.54	100.00	100.553	100.493	-0.06	Compression	-0.06%	10.47%	9.89%
	2100.0	10.10	115.61	105.52	100.00	100.540	100.497	-0.04	Compression	-0.04%	10.35%	9.93%
	2200.0	10.36	127.09	116.73	100.00	100.656	100.626	-0.03	Compression	-0.03%	11.40%	11.14%
	2300.0	10.39	137.80	127.41	100.00	100.571	100.569	0.00		0.00%	10.65%	10.62%
	2398.2	10.30	146.43	136.14	98.18	98.559	98.567	0.01	Tension	0.01%	8.76%	8.85%
	2400.0	10.28	147.34	137.06	1.82	2.035	2.041	0.01	Tension	0.49%	44.73%	45.26%
	2406.2	10.23	150.45	140.23	6.23	6.963	6.987	0.02	Tension	0.29%	44.72%	45.34%
	2414.1	10.29	146.54	136.25	7.83	8.758	8.784	0.03	Tension	0.34%	-44.72%	-45.26%
	2500.0	10.34	140.02	129.69	85.94	86.186	86.189	0.00		0.00%	-7.56%	-7.62%
	2522.5	10.34	137.47	127.12	22.49	22.637	22.637	0.00		0.00%	-11.29%	-11.31%
	2528.8	10.33	140.43	130.10	6.28	6.945	6.949	0.00		0.00%	42.65%	42.76%
	2540.7	10.34	134.63	124.29	11.90	13.238	13.241	0.00		0.00%	-43.83%	-43.86%

Offices Nationwide

APPENDIX II-E

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ___02201056.30_ SHEET NO. _4_ OF __4_ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021_

Cross- Section	Station	Total BL System Settlement (1) (ft)	BL Elevation (Pre- Settlement) (2)	BL Elevation (Post- Settlement) (2)	Horizontal Distance Between Stations (ft)	BL Length (Pre- Settlement) (ft)	BL Length (Post- Settlement)	Change in BL Length (ft)	Comment ⁽³⁾	Change in BL Length ⁽⁴⁾ (%)		Settlement BL e (%)
ည် တိ	(ft)	(14)	(ft)	(ft)	(14)	(10)	(ft)	(1.5)		(70)	Pre-	Post
	2600.0	10.23	124.46	114.23	59.33	60.191	60.174	-0.02	Compression	-0.03%	-16.89%	-16.72%
	2700.0	9.92	112.19	102.28	100.00	100.750	100.712	-0.04	Compression	-0.04%	-12.18%	-11.87%
	2732.0	9.71	107.18	97.47	31.98	32.370	32.339	-0.03	Compression	-0.09%	-15.49%	-14.87%
	2738.1	9.84	110.15	100.31	6.16	6.841	6.786	-0.06	Compression	-0.88%	43.40%	41.87%
ပ္ပ	2750.3	9.57	104.21	94.64	12.19	13.558	13.442	-0.12	Compression	-0.89%	-43.81%	-42.18%
	2800.0	9.16	97.13	87.96	49.67	50.172	50.117	-0.05	Compression	-0.10%	-14.11%	-13.32%
Section	2900.0	7.74	79.96	72.22	100.00	101.463	101.232	-0.23	Compression	-0.23%	-16.92%	-15.55%
Şe	3000.0	5.85	64.92	59.06	100.00	101.125	100.862	-0.26	Compression	-0.26%	-14.88%	-13.04%
	3100.0	0.95	54.59	53.64	100.00	100.532	100.147	-0.38	Compression	-0.38%	-10.27%	-5.42%
	3200.0	0.92	52.83	51.91	100.00	100.016	100.015	0.00		0.00%	-1.76%	-1.73%
	3279.7	0.89	58.41	57.52	79.70	79.893	79.896	0.00		0.00%	6.98%	7.03%
	3290.7	0.89	57.99	57.10	10.99	11.000	11.000	0.00		0.00%	-3.84%	-3.85%

Notes:

 $^{^{(1)}}$ BL settlement for layover and non-layover areas is the total BL settlement from Table E-1 and Table E-2, respectively.

 $^{^{(2)}}$ Liner grades for layover and non-layover areas are from this appendix's Tables E-1 and E-2, respectively.

⁽³⁾ Compression indicates liner is shortened due to settlement; tension indicates elongation.

⁽⁴⁾ +ve or -ve sign with % change in length indicates % elongation or contraction, respectively.

APPENDIX II-F

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30__ SHEET NO. _1_ OF __4__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021

BROWN STATION ROAD SANITARY LANDFILL LCR PIPING STRENGTH CALCULATIONS

Existing LCR piping in Area B will be utilized to collect and remove leachate from Area C Infill that overlaps on to Area B and new LCR piping will be installed in the remainder of Area C Infill. Considering chemical resistance of plastic, HDPE pipe (PE4710) will be selected. Our LCR pipe strength calculations objective(s) were:

- To find dimension ratio (DR) for LCR pipe that will provide sufficient strength and thickness to prevent collapse under pressures exerted by waste, cover material, etc. in Area C Infill that does not overlap on to Area B.
- To check if existing Area B LCR pipe has sufficient strength and thickness to prevent collapse under pressures exerted by additional waste, etc.

Equations used and calculations for estimating LCR pipe strength are provided below.

A. EQUATIONS USED

Buried LCR pipes carrying leachate is subjected to loads due weight of waste mass, cover soil, other fill materials, equipment used for landfill construction, etc. These loads result in ring-bending due to ring deflection and ring compression and ring buckling due to wall compressive stress. The magnitude of ring deflection depends not only on pipe-material properties but also on properties of the surrounding soil. Ring buckling, ring-compression and ring deflection can be controlled within acceptable limits by selecting proper pipe material and pipe thickness. Below are the equations used for estimating if leachate pipe has enough strength against ring buckling, ring compression and ring deflection.

Equation 1 below was used to calculate pipe ring compressive stress (S).

$$S = \frac{(P_E + P_L)DR}{2} \tag{1}$$

For estimating allowable constrained buckling pressure, Luscher Equation gives conservative results than Moore-Selig Equation. Therefore, Luscher Equation, Equation 2 below, was used to calculate allowable constrained ring buckling pressure (P_{CR}).

$$P_{WC} = \frac{5.65}{N} \sqrt{R B' E' \frac{E}{12 (DR-1)^3}}$$
 (2)

Where;

Buoyancy reduction factor,
$$R = 1 - 0.33 \frac{H_{GW}}{H_W}$$
 (3)

Factor,
$$B' = \frac{1}{1 + 4e^{(-0.065H_W)}}$$
 (4)

Spangler's Modified Iowa Formula, Equation 5 below, was used to calculate ring deflection (ΔX).

$$\frac{\Delta X}{D_M} = \frac{K_{BED}L_{DL}P_E + K_{BED}P_L}{\frac{2E}{3}\left\{\frac{1}{DR-1}\right\}^3 + 0.061 F_S E'}$$
 (5)

Equation 6 below was used to calculate vertical pressure (P_F) due to waste, cover material, etc.

$$P_E = \frac{\gamma_W \, H_W}{27 \, x \, 144} \tag{6}$$

Where

S = Pipe wall compressive stress, psi

 P_{WC} = Allowable constrained buckling pressure, psi

N = Safety factor (=2.0 for thermoplastic pipe)

R = Buoyancy reduction factor

 H_{GW} = Height of groundwater above pipe

 ΔX = Ring deflection, in.

 K_{BED} = Bedding factor, typically 0.1

 L_{DL} = Deflection lag factor

 P_E = Vertical soil pressure due to mass of waste, cover material, etc., psi

APPENDIX II-F

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

JOB NO. 02201056.30 SHEET NO. 2 OF 4 CALCULATED BY: GRI CHECKED BY: BSP DATE 10/13/2020, Revised 5/21/2021

 P_L = Vertical soil pressure due to live load, psi

E =Apparent modulus of elasticity of pipe material, psi

E' = Modulus of reaction of leachate collection (aggregate) layer, psi

 F_S = Soil support factor

DR = Dimension ratio of the pipe

 D_M = Mean diameter of the pipe, in

 H_W = Depth of waste and cover material, ft

 γ_W = Average density of waste and cover material, pcy

B. THICKNESS OF THE HDPE LCR PIPE IN AREA C INFILL THAT DOES NOT OVERLAP ON TO AREA B

Maximum waste depth including final cover comes from Appendix II-E

1,300 pcy [new waste density, Appendix II-E] $g_W =$

210 ft [Maximum depth of waste and cover material is 209 ft

{Appendix II-E, Tables E-1 and E-2}]

 $H_{GW} =$ Oft [Because bottom liner system is installed above groundwater]

 $K_{BED} =$ 0.1

 $L_{DI} =$ 1.5 [Ranges from 1.25 to 1.5]

 $P_E =$ 70.2 psi [by Equation 6]

 $P_L =$ O psi [Live load is negligible for pipe-cover depth exceeding 8 feet]

70.2 psi [Total vertical stress = $P_F + P_I$] $P_{Total} =$

E =28,000 psi for PE4XXX pipe material [PPI Handbook, 2 nd Edition]

3,000 psi [leachate collection (aggregate) layer] E' =

 $F_{\rm S} =$ 1 [Pipe is not installed in a trench]

2 [PPI Handbook, 2nd Edition] N =

1. Ring Compression

Pipe wall compressive stress (S) and factor of safety for DR 26, 21, 17, 11, 9 and 7 HDPE pipe is calculated

DR =	26	21	17	11	9	7
By Equation 1,						
S (psi) =	912.8	737.3	596.8	386.2	316.0	245.8
Factor of Safety						
$[P_{ca}/S] =$	1.3	1.6	1.9	3.0	3.6	4.7

Allowable compressive stress (P_{ca}) = 1,150 psi for PE4XXX [PPI Handbook, 2^{nd} Edition]

DR26 or thicker PE4XXX HDPE pipe is safe against ring compressive stresses.

2. Ring Buckling

1.0 [By Equation 3] B' = 1.0 [By Equation 4]

Allowable constrained buckling pressure (Pwc) and factor of safety for DR 26, 21, 17, 11, 9 and 7 HDPE pipe is

DR =	26	21	17	11	9	7
By Equation 2,						
P_{WC} (psi) =	59.8	83.6	116.8	236.4	330.3	508.6
Factor of Safety						
$[P_{WC}/P_{Total}] =$	0.9	1.2	1.7	3.4	4.7	7.2

Allowable constrained buckling pressure for DR17 or thicker HDPE pipe has a factor of safety of 1.3 or more,

APPENDIX II-F

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

	JOB NO	022010	56.30
	SHEET NO	D3_ OF	4
	CALCULA	TED BY:	GRI_
	CHEC	KED BY:	BSP
DATE	10/13/2020, Re	evised 5/2	1/2021

3. Ring Deflection

Ring deflection for DR 26, 21, 17, 11, 9, and 7 HDPE pipe is calculated below.

DR =	26	21	17	11	9	7
By Equation 5,						
$\Delta X/D_M =$	0.0572	0.0568	0.0562	0.0522	0.0480	0.0391
or	5.72%	5.68%	5.62%	5.22%	4.80%	3.91%

Acceptable ring deflection limits for non-pressure applications is 7.5% (PPI Handbook, 2nd Edition). Thus, ring deflection for DR 26 or thicker HDPE pipe is within the acceptable ring deflection limits.

In conclusion, DR26 or thicker PE4XXX, HDPE pipe has sufficient strength and thickness to support weight of waste mass and cover material and prevent collapsing under pressures exerted by waste, cover material and equipment to be used at the landfill. Conservatively, DR17 or thicker HDPE pipe is selected.

C. CHECK EXISTING LCR PIPING IN AREA B (Revised on 5/21/2021)

Maximum depth of waste above LCR pipe in Area B = $125 \text{ ft}^{[6]}$

 $g_W = 1,300 \text{ pcy [See above]}$

 $H_W = 170 \text{ ft}$ [* (125 ft + 38 ft additional waste; comparing maximum final grade for

Area B (222 ft) and Area C Infill (260 ft)]

 $P_E = 56.8 \text{ psi [by Equation 6]}$

 P_{Total} = 56.8 psi [Total vertical stress = $P_E + P_L$]

Pipe material and thickness of the existing LCR pipe and pipe bedding in leachate collection layer and side berm of Area B is given below.

	Pipe Material	Pipe Thickness	Bedding Material
Leachate Collection Layer	HDPE or PVC	DR21	Aggregates
Side Berm	PVC	DR21 or SCH80	Well compacted soil

Existing LCR pipe DR = 21 [Minimum thickness of the existing LCR pipe]

C-1. CHECK EXISTING HDPE PIPE IN LEACHATE COLLECTION LAYER

As stated earlier, the existing LCR pipe is DR21 HDPE pipe and pipe bedding material is aggregate. E and E' values have been provided in Section B of this Appendix.

1. Ring Compression

Pipe wall compressive stress, S = 596.8 psi [By Equation 1]

Allowable compressive stress (P_{ca}) = 1,000 psi for PE3XXXX, & PE4708 [PPI Handbook, 2nd Edition]

Factor of Safety $(P_{ca} / S) = 1.68$

Because the factor of safety is more than 1.0, the existing DR 21 HDPE pipe has enough strength and thickness against ring compression.

2. Ring Buckling

R = 1.0 [By Equation 3]

B' = 1.00 [By Equation 4]

Allowable constrained buckling pressure, P_{WC} = 83.6 psi [By Equation 2]

Factor of Safety $[P_{WC}/P_{Total}] = 1.5$

Because the factor of safety is more than 1.0, the existing DR 21 HDPE pipe has enough strength and thickness against ring compression.

APPENDIX II-F

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30__ SHEET NO. _4_ OF __4__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020, Revised 5/21/2021_

3. Ring Deflection

By Equation 5, ring deflection $\Delta X/D_M = 0.0460$ 4.60%

Acceptable ring deflection limits for non-pressure applications is 7.5% (PPI Handbook, 2nd Edition). Thus, ring deflection for the existing DR 21 HDPE pipe is within the acceptable ring deflection limits.

In conclusion, the existing thickness DR21 of HDPE pipe for the Area B leachate collection system has enough strength and thickness to support 38 ft of the additional waste mass.

C-2. CHECK EXISTING PVC PIPE IN SIDE BERMS

As stated earlier, the existing LCR pipe inside berms of Area B is PVC (minimum) DR21 and pipe bedding material is wellcompacted clean soil. Thus,

E = 360,000 psi for [PVC pipe; Harvel.com and US Pipe Inc.]

E' = 2,000 psi [pipe bedding material is coarse grain soils with fines]

1. Ring Compression

Pipe wall compressive stress, S = 596.8 psi [By Equation 1]Allowable compressive stress (P_{ca}) = 9,600 psi for PVC [Harvel.com]

Factor of Safety $(P_{ca} / S) = 16.08$

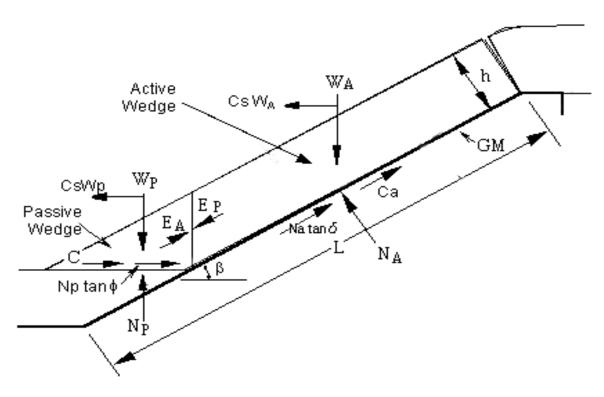
Because the factor of safety is more than 1.0, the existing DR 21 PVC pipe has enough strength and thickness against ring compression.

2. Ring Buckling

R = 1.0 [By Equation 3] B' = 1.00 [By Equation 4] $Allowable constrained buckling pressure, <math>P_{WC} = 299.6 \text{ psi [By Equation 2]}$ $Factor of Safety [P_{WC}/P_{Total}] = 5.3$

Because the factor of safety is more than 1.0, the existing DR 21 PVC pipe has enough strength and thickness against ring buckling.

3. Ring Deflection


By Equation 5, ring deflection $\Delta X/D_M = 0.0561$ 5.61%

Acceptable ring deflection limits for non-pressure applications is 7.5% (PPI Handbook, 2nd Edition). Thus, ring deflection for the existing DR 21 PVC pipe is within the acceptable ring deflection limits.

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _1_ OF __7__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020_

TABLE G-1: VENEER STABILITY BY KOERNER AND SOONG METHOD BROWN STATION ROAD SANITARY LANDFILL

Consideration: To determine the minimum factor of safety (FS) corresponding to various interfaces of a geosynthetic lined slope of the bottom liner and LCS on the overlay area of the Area C Infill using an analysis as described by Koerner and Soong (1998) referenced below

Ref.: R.M. Koerner, and T-Y.Soong, 1998. "Analysis and Design of Veneer Cover Soils". Proceeding of 6th International Conference on Geosynthetics, Vol. 1, pp. 1-23, Atlanta, Georgia, USA.

Parameters:

L	=	length of slope meausured along the geomembrane
β	=	soil slope angle beneath the geomembrane
FS	=	factor of safety against instability
W_A	=	total weight of the active wedge between
W_P	=	total weight of the passive wedge
N_A	=	effective force normal to the failure plane of the active wedge
h	=	thickness of the liner system
γ	=	unit weight of the liner system
ф	=	subbase soil friction angle
δ	=	interface friction angle
C_a	=	adhesive force between liner soil of the active wedge and the geomembrane
Ca	=	adhesion between liner soil of the active wedge and the geomembrane
С	=	cohesive force along the failure plane of the passive wedge
С	=	cohesion of the liner soil

APPENDIX II-G

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _2_ OF __7__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020_

Calculate Factor of Safety (FS):

$$\begin{split} FS &= \frac{-b + (b^2 - 4ac)^{1/2}}{2a} \quad \text{, where} \\ a &= (C_SW_A + N_A sin\beta)(cos\beta) + C_SW_P(cos\beta) \\ b &= -[(C_SW_A + N_A sin\beta)sin\beta(tan\phi) + (N_A tan\delta + C_a)(cos^2\beta) + (C + W_P tan\phi)cos\beta] \\ c &= (N_A tan\delta + C_a)cos\beta sin\beta tan\phi \quad \text{, where} \\ W_A &= \gamma h^2 \left[(L/h) - (1/sin\beta) - (tan\beta/2) \right] \\ N_A &= W_A(cos\beta) \\ W_P &= \gamma h^2 / sin2\beta \\ C_a &= c_a(L-(h/sin\beta)) \\ C &= (ch)/(sin\beta) \end{split}$$

Assumptions:

To analyze the veneer stability of the bottom liner for the Area C Infill in the over lay area, longest slope (Section E-E', Exhibit II-G-1) along the existing cover in the Area A1 and Area A2 is considered. The existing Area A1 and A2 does not exceed a slope of 1V:4H and hence a slope angle (β) of 14 degrees is considered. A minimum adheshion (ca) of 20psf and cohesion (c) of 0 psf are assumed for both existing cover and proposed liner soils. A cumulative unitweight (γ) of 110 pcf and internal friction angle (γ) of 25 degrees is conservatively assumed for the existing cover and proposed bottom liner. The following values are adopted for thickness of liner system above each interface (h) and interface friction angle (δ):

	Interface	Height of cove	r+liner system	
	friction	above i	nterface	
Interfaces considered	angle	(ft)	(mm)	Assumption notes
Waste and intermediate cover	22	7.5	2,286.0	SCS experience
Intermediate cover and subgrade	25	5.5	1,676.4	SCS experience
Subgrade and Geotextile	30	5	1,524.0	GRI # 30 (Assumed NW NP GT - cohesive
Geotextile and 40 MIL textured LLDPE	26	5	1,524.0	GRI # 30 (Assumed peak value for NW NP GT - LLDPE-T)
40 MIL textured LLDPE and Geocompos	26	5	1,524.0	GRI # 30 (peak value for NW NP GT - LLDPE-T)
Geocomposite and Vegetative cover	27	5	1,524.0	GRI # 30
Vegetative cover and Subbase	30	4	1,219.2	GRI # 30 (Assumed NW NP GT - cohesive soil)
Subbase and 60 MIL textured HDPE line	20	2	609.6	Assumed peak value for HDPE-T - Cohesive soil (unsaturated)
60 MIL HDPE liner and Geotextile	20	2	609.6	see above for 40 mil and geocomposite
Geotextile and Drainage layer	24	2	609.6	SCS experience

Geotextile - Drainage Layer Interface

γ=	15.62	$kN/m^3 =$	110 pcf
h =	609.6	mm =	0.61 m
L=	225.0	m	
β =	14.00	° =	0.24 rad

APPENDIX II-G

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ___02201056.30_ SHEET NO. _3_ OF __7__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020_

C _s =	0.00	g
ф=	25.00	° = 0.44 rad
δ =	24.00	° = 0.42 rad
c =		kN/m ²
c _a =	0.96	kN/m ²
·-		_
$W_A =$	2,117.72	kN
$N_A =$	2,054.82	kN
$W_P =$	12.36	kN
$C_a =$	213.58	kN
C =	0.00	kN
a =	482.34	
b =	-1,124.07	
c =	123.52	
FS =	2.21	
г э =	2.21	

60 MIL HDPE Liner - Geotextile Interface

γ=	15.62	kN/m ³	
h =	609.6	mm =	0.61 m
L =	225.0	m	
β =	14.00	° =	0.24 rad
$C_s =$	0.00	g	
φ=	25.00	° =	0.44 rad
δ =	20.00	۰ =	0.35 rad
c =		kN/m ²	
c _a =	0.96	kN/m ²	
$W_A =$	2,117.72	kN	
$N_A =$	2,054.82	kN	
$W_P =$	12.36	kN	
C _a =	213.58	kN	
C =	0.00	kN	
a =	482.34		
b =	-966.87		
c =	105.24		
FS =	1.89		

Subbase - 60 MIL HDPE Liner Interface

		1 _	
γ=	15.62	kN/m ³	
h =	609.6	mm =	0.61 m
L =	225.0	m	
β =	14.00	° =	0.24 rad
$C_s =$	0.00	g	
ф=	25.00	° =	0.44 rad
δ =	20.00	° =	0.35 rad

c =

APPENDIX II-G

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _4_ OF __7__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020_

		i
c =	0.00	kN/m ²
c _a =	0.96	kN/m ² kN/m ²
_		
N _A =	2,117.72	kN

 $N_A =$ 2,054.82 kN $W_P =$ 12.36 kN $C_a =$ 213.58 kN C = 0.00 kN

a = 482.34 b = -966.87

105.24

FS = 1.89

Existing Vegetative Cover - Subbase Interface

γ=	15.62	kN/m ³	
h =	1,219.2	mm =	1.22 m
L =	225.0	m	
β=	14.00	° =	0.24 rad
$C_s =$	0.00	g	
φ=	25.00	° =	0.44 rad
δ=	30.00	° =	0.52 rad
c =	0.00	kN/m ² kN/m ²	
c _a =	0.96	kN/m ²	

FS = 2.55

Existing Geocomposite - Existing Vegetative Cover Interface

		-		
γ=	15.62	kN/m ³		
h =	1524.0	mm =	:	1.52 m
L=	225.0	m		
β =	14.00	° =	:	0.24 rad
$C_s =$	0.00	g		
φ = δ =	25.00	° =	:	0.44 rad
δ =	27.00	° =	:	0.47 rad
c =	0.00	kN/m² kN/m²		
c _a =	0.96	kN/m ²		

APPENDIX II-G

1.52 m

0.24 rad

0.44 rad 0.45 rad

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _5_ OF __7__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020_

$W_A =$	5,201.62 kN	J
$N_A =$	5,047.11 kN	J
$W_P =$	77.28 kN	J
C _a =	209.95 kN	J
C =	0.00 kN	J
a =	1,184.74	
b =	-2,791.49	
c =	304.47	
FS =	2.24	

Existing 40 MIL LLDPE - Existing Geocomposite Interface

γ=	15.62	kN/m ³
h =	1,524.0	mm =
L =	225.0	m
β =	14.00	° =
$C_s =$	0.00	g
φ=	25.00	° =
δ =	26.00	° =
c =	0.00	kN/m ²
c _a =	0.96	kN/m² kN/m²

$W_A =$	5,201.62	kΝ
$N_A =$	5,047.11	kΝ
$W_P =$	77.28	kΝ
$C_a =$	209.95	kΝ
C =	0.00	kΝ
a =	1,184.74	
b =	-2,687.94	
c =	292.43	

FS = 2.15

Existing Geotextile - Existing 40 MIL LLDPE Interface

γ=	15.62	kN/m ³	
h =	1,524.0	mm =	= 1.52 m
L =	225.0	m	
β =	14.00	° =	0.24 rad
$C_s =$	0.00	g	
φ=	25.00	° =	0.44 rad
δ=	26.00	° =	0.45 rad
c =		kN/m ²	
c _a =	0.96	kN/m ²	
$W_A =$	5,201.62	kN	
$N_A =$	5,047.11	kN	
$W_P =$	77.28	kN	

APPENDIX II-G

1.52 m

0.24 rad

0.44 rad 0.52 rad

1.68 m

0.24 rad

0.44 rad 0.44 rad

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _6_ OF __7__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020_

C _a =	209.95 kN
C =	0.00 kN
a =	1,184.74
b =	-2,687.94
C =	292.43
FS =	2.15

Existing Subgrade - Existing Geotextile Interface

i		
γ=		kN/m ³
h =	1,524.0	mm
L=	225.0	m
β =	14.00	•
$C_s = \delta = \delta$		g
φ=	25.00	•
δ =	30.00	•
c =	0.00	kN/m² kN/m²
c _a =	0.96	kN/m²

$W_A =$	5,201.62 kN
$N_A =$	5,047.11 kN
$W_P =$	77.28 kN
C _a =	209.95 kN
C =	0.00 kN
a =	1,184.74
b =	-3,113.78
C =	341.94

FS =

Existing Intermediate Cover - Existing Subgrade Interface

2.51

		•
γ=	15.62	kN/m³
h =	1,676.4	mm
L =	225.0	m
β =	14.00	•
$C_s =$		g
φ=	25.00	0
δ=	25.00	•
c =	0.00	kN/m² kN/m²
c _a =	0.96	kN/m ²
		1

$W_A =$	5,704.78 kN
N _A =	5,535.33 kN
$W_P =$	93.50 kN
C _a =	209.35 kN
C =	0.00 kN
a =	1,299.34
h =	-2.820.57

APPENDIX II-G

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676 JOB NO. ____02201056.30_ SHEET NO. _7_ OF __7__ CALCULATED BY: __GRI_ CHECKED BY: __BSP_ DATE _10/13/2020_

c = 305.45

FS = 2.06

Existing Waste - Existing Intermediate Cover Interface

γ=	15.62	kN/m ³	
h =	2,286.0		2.29 m
L =	225.0	m	
β =	14.00	• =	0.24 rad
$C_s =$	0.00	g	
φ=	25.00	° =	0.44 rad
δ=	22.00	° =	0.38 rad
c =	0.00	kN/m ² kN/m ²	
c _a =	0.96	kN/m ²	

 $W_A =$ 7,686.56 kN $N_A =$ 7,458.24 kN $W_P =$ 173.87 kN C_a = 206.93 kN C = 0.00 kN 1,750.72 a = b = -3,314.00 352.49 c =

FS = 1.78

APPENDIX II-G

SLOPE STABILITY BY PCSTABL5M3

C:section ee' veneer static trial 5.0UT Page 1

** PCSTABL5M3 **

by Purdue University 1985 rev. for SCS Engineers HVA 2008 --Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 08/05/2020 Time of Run: 08:12PM Run By: GRI

Input Data Filename: C:section ee' veneer static trial 5.in Output Filename: C:section ee' veneer static trial 5.OUT Unit: ENGLISH

Plotted Output Filename: C:section ee' veneer static trial 5.PLT

PROBLEM DESCRIPTION Section EE' veneer- static

BOUNDARY COORDINATES

3 Top Boundaries 24 Total Boundaries

Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	442.88	76.08	974.90	140.01	1
2	974.90	140.01	1200.00	139.33	1
3	1200.00	139.33	1673.38	128.01	1
4	442.88	74.08	974.90	138.01	2
5	974.90	138.01	1200.00	137.33	2
6	1200.00	137.33	1673.38	126.01	2
7	442.88	74.07	974.90	138.00	3
8	974.90	138.00	1200.00	137.32	3 3 3
9	1200.00	137.32	1673.38	126.00	3
10	442.88	71.07	974.90	136.00	4
11	974.90	136.00	1200.00	135.32	4
12	1200.00	135.32	1673.38	125.00	4
13	442.88	71.07	974.90	136.00	5
14	974.90	136.00	1200.00	135.32	5
15	1200.00	135.32	1673.38	125.00	5
16	442.88	71.07	974.90	136.00	6
17	974.90	136.00	1200.00	135.32	6
18	1200.00	135.32	1673.38	125.00	6
19	442.88	70.57	974.90	135.50	7
20	974.90	135.50	1200.00	134.82	7
21	1200.00	134.82	1673.38	124.50	7
22	442.88	68.57	974.90	133.50	8
23	974.90	133.50	1200.00	132.82	8
24	1200.00	132.82	1673.38	122.50	8

ISOTROPIC SOIL PARAMETERS

9 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type	Unit Wt.	. Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	110.0	140.0	0.0	24.0	0.00	0.0	1
2	100.0	100.0	0.0	20.0	0.00	0.0	1
3	110.0	120.0	0.0	25.0	0.00	0.0	1
4	110.0	120.0	0.0	25.0	0.00	0.0	1
5	100.0	100.0	0.0	20.0	0.00	0.0	1
6	100.0	100.0	0.0	11.0	0.00	0.0	1
7	110.0	120.0	0.0	25.0	0.00	0.0	1
8	110.0	120.0	0.0	22.0	0.00	0.0	1
9	65.0	65.0	250.0	32.0	0.00	0.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

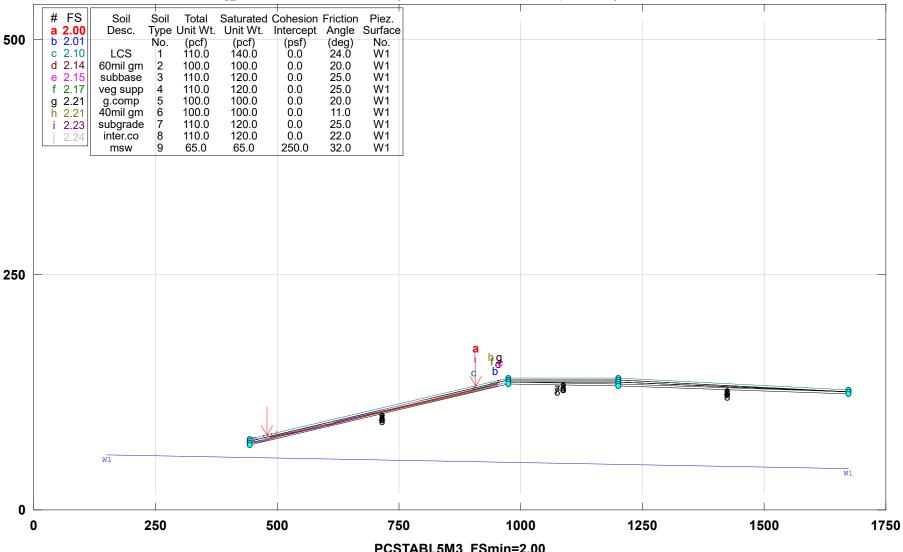
Point X-Water Y-Water No. (ft) (ft) 1 150.00 59.12 2 1673.38 43.30

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

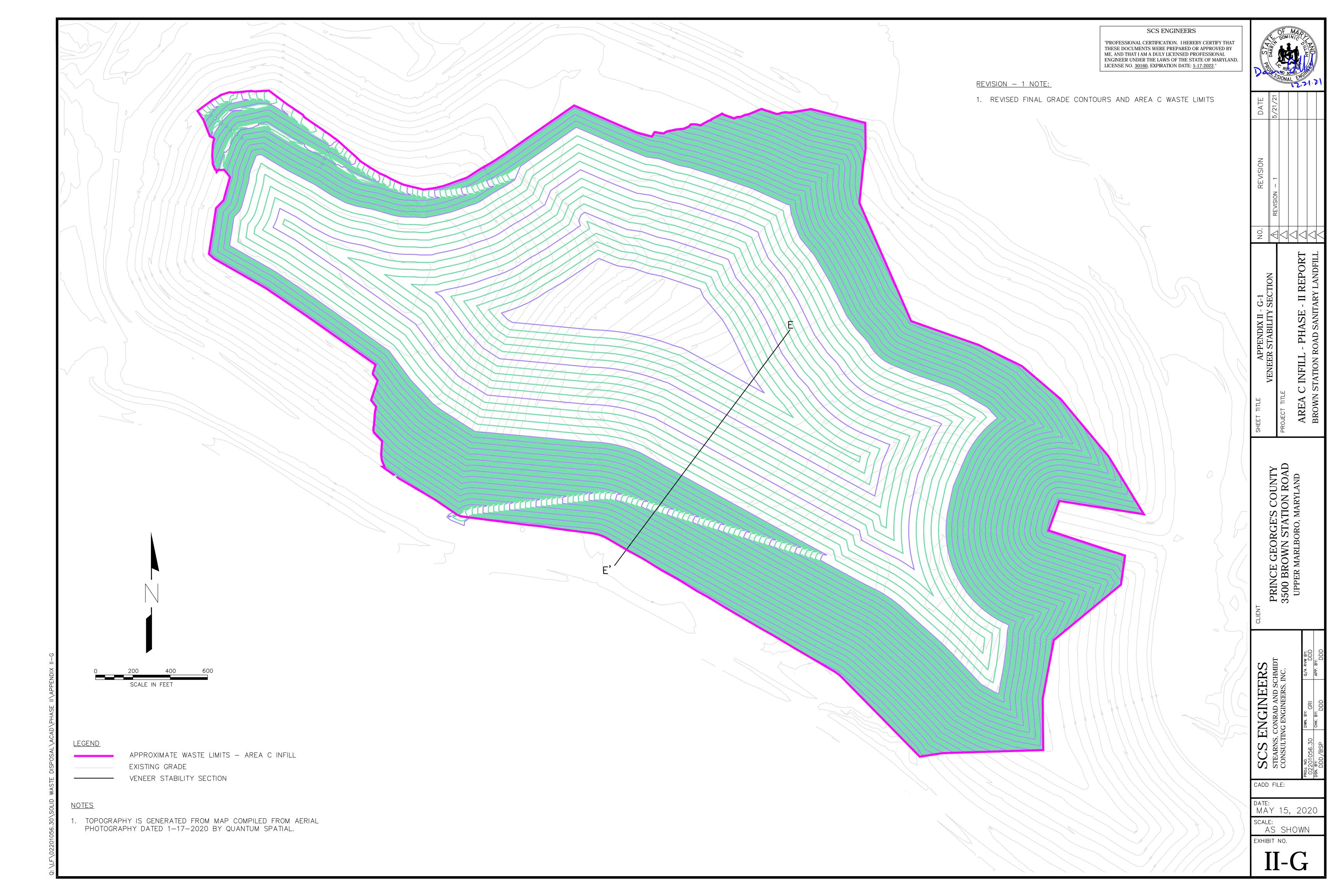
200 Trial Surfaces Have Been Generated.

⁴ Boxes Specified For Generation Of Central Block Base

```
Sliding Block Is 10.0
      Box
                            X-Left
                                                  Y-Left X-Right
                                                                                               Y-Right
                                                                                                                            Height
                                                     70.57 502 7
                                                                                            (ft)
80.00
     No.
                              (ft)
                                                                                                                              (ft)
       1
                            450.00
                                                                           503.00
                                                                                                                             1.00
                                                80.00 600.00 90.00
90.00 750.00 110.00
110.00 974.90 135.50
        2
                            504.00
                                                                                                                          1.00
                            600.10
        3
       4
                            750.10
                                                                                                                               1.00
      Following Are Displayed The Ten Most Critical Of The Trial
                Failure Surfaces Examined. They Are Ordered - Most Critical
                   ^{\star} ^{\star} Safety Factors Are Calculated By The Modified Janbu Method ^{\star} ^{\star}
                  Failure Surface Specified By 6 Coordinate Points
                                             X-Surf
                                                                    Y-Surf
                                               (ft)
                                                                          (ft)
                         No.
                          1
                                             479.02
                                                                        80.42
                           2
                                             484.56
                                                                        76.73
                                                                       88.12
                           3
                                              585.30
                                             91.96
902.50 127.09
906.80
                                              617.47
                           4
                                                                         91.96
                               ***
                                              2.004 ***
                             Individual data on the 11 slices
                                                                                                               Tie Earthquake
                                                           Water Water Tie Tie
Force Force Force Force
                                                                                                                               Force Sure...


Hor Ver Load
('lba) (lbs)
                                                                                                                                    Force Surcharge
                                                                                            Norm
Slice Width Weight
                                                            Top
                                                                            Bot
                                                                                                                Tan
                                                                           (lbs) (lbs) (lbs)
                                                          (lbs)
                                                                                                                                                  (lbs)
                                                                                                                                                                   (lbs)
 No.
             (ft) (lbs)
                                                                                                                               (lbs)
                                                                       (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 
                                279.7
           2.5
                                                         0.0
                     1044.1 0.0
32384.3 0.0
19769.0 0.0
17880.0 0.0
145426.8 0
          0.0
 2
 3
          3.0
        64.2
 5
        36.5
  6
       32.2
      285.0
 7
                                                          0.0
        0.1
 8
 9
           2.2
                                   737.9
                                    2.3
10
           0.0
                                 224.5 0.0
11
           2.0
                  Failure Surface Specified By 6 Coordinate Points
                       Point X-Surf Y-Surf
                                                                       (ft)
                         No.
                                              (ft)
                          1
                                             453.76
                                                                          77.39
                                                                        72.81
                           2
                                             461.69
                           3
                                             589.82
                                                                       88.78
                                             623.66
                           4
                                                                        93.20
                                             942.07 131.56
946.66 136.62
                           5
                                             2.008 ***
                   Failure Surface Specified By 6 Coordinate Points
                       Point
                                        X-Surf Y-Surf
                         No.
                                              (ft)
                                                                        (ft)
                                                                       82.25
79.28
                          1
                                             494.20
                                             499.33
                                                                       82.06
                           3
                                             521.69
                                             615.94
                                                                       91.66
                                                                    126.47
                                            899.31
                                           904.38
                                                                     131.54
                                             2.103
                   Failure Surface Specified By 6 Coordinate Points
                       Point
                                       X-Surf
                                                                 Y-Surf
                                               (ft)
                         No.
                                                                        (ft)
                          1
                                             470.36
                                                                         79.38
                                                                       74.94
84.59
                           2
                                              476.06
                           3
                                             543.46
                                                                        90.28
                                             602.21
                           4
                                                                 132.79
                                             951.18
                                           954.77
2.144 ***
                                                                     137.59
                   Failure Surface Specified By 6 Coordinate Points
                                           X-Surf Y-Surf
                       Point
```

Length Of Line Segments For Active And Passive Portions Of


```
(ft)
   No.
            (ft)
                       81.42
78.10
82.52
   1
            487.31
            494.35
   3
            525.23
                        92.36
            620.00
           620.00 92.36
955.90 133.65
957.00 137.86
2.149 ***
    5
            2.149
Failure Surface Specified By 6 Coordinate Points
  Point X-Surf Y-Surf
  No.
            (ft)
                        (ft)
   1
            486.67
                       81.34
                       77.73
85.24
   2
           490.70
   3
            557.24
                        93.91
            631.93
    4
                     131.34
136.02
            937.79
           941.72 1
2.167 ***
Failure Surface Specified By 6 Coordinate Points
  Point X-Surf Y-Surf
             (ft)
                        (ft)
  No.
                        77.02
           450.69
   1
                       71.41
85.86
90.78
   2
           456.67
           558.98
   3
    4
            607.12
           950.63 133.00
955.23 137.65
    5
    ***
            2.208 ***
Failure Surface Specified By 6 Coordinate Points
  Point X-Surf Y-Surf
  No.
             (ft)
                        (ft)
                      82.64
79.68
           497.44
   1
   2
           500.94
                       90.01
   3
           598.85
            618.13
   4
                        92.37
   5
            935.97
                        130.71
          939.44 135.75
2.213 ***
Failure Surface Specified By 6 Coordinate Points
  Point X-Surf Y-Surf
  No.
                       (ft)
76.37
            (ft)
            445.32
   1
            450.94
                       70.83
   2
   3
            569.78
                       86.86
            612.57
                        91.45
   4
           903.04 126.89
905.98 131.73
2.230 ***
   5
Failure Surface Specified By 6 Coordinate Points
                     Y-Surf
  Point
         X-Surf
                        (ft)
76.44
71.02
  No.
            (ft)
   1
            445.85
            451.48
           571.14
                       87.26
   3
           601.23
                        90.16
           900.96 126.86
905.77 131.70
2.239 ***
   5
     905.77
   6
```

Section EE' veneer- static

c:\users\4665g_r\documents\areac\veneer stability\section ee' veneer static trial 5.pl2 Run By: GRI 08/05/2020 08:12PM

PCSTABL5M3 FSmin=2.00 Safety Factors Are Calculated By The Modified Janbu Method

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

APPENDIX II-H GROUNDWATER QUALITY PARAMETERS

JOB NO. ____02201056.30_ SHEET NO. _1_ OF __6_ COMPILED BY: __GRI_ CHECKED BY: __BSP_ DATE __05/17/2021_

TABLE I PARAMETERS

SW-846 Analytical Method	Sample Size - Container	Maximum Holding	Preservation
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Time	
8260B	40 mL (3) - glass VOA	14 days	4°C; HCI; No head space
8011	60 mL (2) - amber VOA	14 days	4°C; HCI; No head space
Volatile Organic Compound	Current LOD (µg/L)	Current LOQ (µg/L)	RDP PQL (µg/L)
1,1,1,2-Tetrachloroethane	0.4	0.4	1
1,1,1-Trichloroethane	0.6	1	1
1.1.2.2-Tetrachloroethane	0.3	0.4	1
1,1,2-Trichloroethane	0.5	1	1
1,1-Dichloroethane	0.6	1	1
1,1-Dichloroethene	0.8	1	1
•			
1,2,3-Trichloropropane	0.009	0.01	1
1,2,3-Trichloropropane	0.4	1	1
1,2-Dibromo-3-chloropropane	0.005	0.01	1
1,2-Dibromoethane	0.008	0.01	1
1,2-Dichlorobenzene	0.4	1	1
1,2-Dichloroethane	0.7	1	1
1,2-Dichloropropane	0.4	1	1
1.4-Dichlorobenzene	0.4	1	1
2-Butanone	3	10	5
2-Hexanone	2.2	5	5
4-Methyl 2-pentanone	1.5	5	5
, ,		-	
Acetone	7	10	5
Acrylonitrile	1.7	5	5
Benzene	0.4	1	1
Bromochloromethane Bromodichloromethane	0.5	0.5	1
Bromoform	0.4	1	1
Bromomethane	0.8	1	1
Carbon disulfide	1	10	1
Carbon tetrachloride	0.5	1	1
Chlorobenzene	0.4	1	1
Chloroethane	0.7	1	1
Chloroform	0.5	0.5	1
Chloromethane cis-1,2-Dichloroethene	0.95	1	1
cis-1,2-Dichloropropene	0.4	1	1
Dibromochloromethane	0.35	0.5	1
Dibromomethane	0.4	1	1
Ethyl benzene	0.4	1	1
Methyl lodide	1.7	10	1
Methylene chloride	1	4	1
Methyl-t-butyl ether	0.6	1	2
Styrene Tetrachloroethene	0.4	1	1
Toluene	0.4	1	1
trans-1,2-Dichloroethene	0.6	1	1
trans-1,3-Dichloropropene	0.3	1	1
trans-1,4-Dichloro-2-butene	1	4	5
Trichloroethene	0.4	1	1
Trichlorofluoromethane	0.8	1	1
Vinyl acetate	2	10	1
Vinyl chloride	0.5	0.5	1
Xylene	1	3	1

[°]C = degrees Celsius

HCl = Hydrochloric Acid

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mL = milliliter

RDP PQL = Refuse Disposal Permit Practical Quantitation Limit $\mu g/L$ = microgram per liter

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

APPENDIX II-H **GROUNDWATER QUALITY PARAMETERS**

JOB NO. ____02201056.30__ SHEET NO. _2_ OF __6___ COMPILED BY: __GRI_ CHECKED BY: __BSP_ DATE __05/17/2021__

TABLE II PARAMETERS

Parameter	Analytical Method	Sample Size - Container	Maximum Holding Time	Preservation	Current LOD	Current LOQ	RDP PQL
Total Elements (µg/L, unless otherw	vise noted)						
Antimony	SW-846 6020A	500 mL - plastic	90 days	Nitric Acid	1	1	2
Arsenic	SW-846 6020A	500 mL - plastic	90 days	Nitric Acid	0.5	1	2
Barium	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	5	10	10
Beryllium	SW-846 6020A	500 mL - plastic	90 days	Nitric Acid	0.2	1	2
Cadmium	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	2	4	4
Calcium (mg/L)	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	0.4	0.5	0.08
Chromium	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	4	10	10
Cobalt	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	2	4	10
Copper	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	3	10	10
Iron (mg/L)	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	0.005	0.01	0.005
Lead	SW-846 6020A	500 mL - plastic	90 days	Nitric Acid	1	1	2
Magnesium (mg/L)	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	0.1	0.1	0.004
Manganese	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	2	10	4
Mercury	SW-846 7470A	500 mL - plastic	90 days	Nitric Acid	0.2	0.2	0.2
Nickel	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	2	10	11
Potassium (mg/L)	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	0.5	0.5	0.39
Selenium	SW-846 6020A	500 mL - plastic	90 days	Nitric Acid	0.85	1	35
Silver	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	5	10	10
Sodium (mg/L)	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	0.5	0.5	0.2
Thallium	SW-846 6020A	500 mL - plastic	90 days	Nitric Acid	1	1	2
Vanadium	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	8	10	10
Zinc	SW-846 6010C	500 mL - plastic	90 days	Nitric Acid	10	10	10
Indicator Parameters (mg/L, unles	s otherwise noted)						
Alkalinity	SM22 2320B-2011	250 mL - plastic	28 days	4°C	5	5	1
Ammonia	EPA350.1 R2.0	250 mL - plastic	28 days	4°C; Sulfuric Acid	0.1	0.1	1
Chemical Oxygen Demand	SM22 5220D-2011	250 mL - plastic	28 days	4°C; Sulfuric Acid	10	10	10
Chloride	EPA 300.0 R2.1	250 mL - plastic	28 days	4°C	2.5	5	0.39
<u>Hardness</u>	SM20 2340B-2011 SM22 4500-NO3F-2011.	500 mL - plastic	90 days	Nitric Acid	1.41	1.66	0.5
Nitrate	SM22 4500-NO31-2011, SM22 4500-NO2B-2011, Calculation	250 mL - plastic	2 days	4°C	0.11	0.15	0.06
ph (s.u.)	Field Measurement	n/a	n/a	4°C			0.1
Specific Conductance (µS/cm)	Field Measurement	n/a	n/a	4°C			1000
Solids, Total Dissolved	SM22 2540C-2011	250 mL - plastic	7 days	4°C	10	10	10
Sulfate	EPA 300.0 R2.1	250 mL - plastic	28 days	4°C	2.5	5	0.38
Turbidity (NTU) = not applicable	Field Measurement	n/a	n/a	4°C			0.11

[°]C = degrees Celsius

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mL = milliliter

NTU = Nephelometric Turbidity Unit

RDP PQL = Refuse Disposal Permit Practical Quantitation Limit

s.u. = Standard Unit

 $[\]mu$ g/L = microgram per liter

μS/cm = microSiemen per centimeter

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

APPENDIX II-H GROUNDWATER QUALITY PARAMETERS

JOB NO. ____02201056.30_ SHEET NO. _3_ OF __6__ COMPILED BY: __GRI_ CHECKED BY: __BSP_ DATE __05/17/2021_

APPENDIX II PARAMETERS (NOT LISTED ON TABLES I AND II)

Parameter Group	SW-846 Analytical Method	Sample Size - Container	Maximum Holding Time	Preservation
Herbicides	8151A	1 L - Glass Amber	7 days	4°C
Cyanide	9012B	250 mL - plastic	14 day	4°C in the dark; Sodium Hydroxide
Sulfide	9215	1 L - plastic	7 days	4°C; Sodium Hydroxide & Zinc Acetate
Tin - Total	6010C	500 mL - plastic	90 days	Nitric Acid
Polychlorinated Biphenyls	8082A	1 L - Glass Amber	7 days	4°C
Pesticides	8081B	1 L - Glass Amber	7 days	4°C
Semi-Volatile Organic Compounds	8270D	1 L - Glass Amber	7 days	4°C
Volatile Organic Compounds	8260B	40 mL (3) - glass VOA	14 days	4°C; Hydrochloric Acid; No head space

Cyanide 10 10 Sulfide 800 1000 Tin - Total 20 20 HERBICIDES 24,5-TP 0.1 0.5 2,4,5-TP 0.1 0.5 2.4-D Dinoseb 0.1 0.5 2.4-D Dinoseb 0.1 0.5 2.5 Pentachlorophenol 6.06 20.2 0.5 Pol YCHLORINATED BIPHENYLS Pol YCHLORINATED BIPHENYLS No.2 0.5 Pol YCHLORINATED BIPHENYLS Protection 1016 0.026 0.202 0.5 POLYCHLORINATED BIPHENYLS Protection 1016 0.026 0.202 0.5 Pol YCHLORINATED BIPHENYLS Protection 1016 0.026 0.202 0.202 Pol YCHLORINATED BIPHENYLS Protection 1016 0.026 0.202 0.02 0.02 Aroclor 1221 0.026 0.022 0.202 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.0						
Sulfide	Parameter	Current LOD (µg/L)	Current LOQ (µg/L)			
Tin - Total 20 20 HERBICIDES 2.4,5-T 0.1 0.5 2.4,5-TP 0.1 0.5 2.4-D 0.2 0.5 Dinoseb 0.1 0.5 Pentachlorophenol 6.06 20.2 Pentachlorophenol 0.2 0.5 POLYCHLORINATED BIPHENYLS Aroclor 1016 0.026 0.202 Aroclor 1221 0.202 0.202 Aroclor 1232 0.015 0.202 Aroclor 1232 0.015 0.202 Aroclor 1242 0.041 0.202 Aroclor 1248 0.048 0.202 Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PESTICIDES 4,4-DDD 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.020 0.051 BHC-Beta 0.020 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051						
Company						
2,4,5-T 0.1 0.5 2,4,5-TP 0.1 0.5 2,4-D 0.2 0.5 Dinoseb 0.1 0.5 Pentachlorophenol 6.06 20.2 Pentachlorophenol 0.2 0.5 POLYCHLORINATED BIPHENYLS Aroclor 1016 0.026 0.202 Aroclor 1221 0.202 0.202 Aroclor 1232 0.015 0.202 Aroclor 1242 0.041 0.202 Aroclor 1254 0.035 0.202 Aroclor 1254 0.035 0.202 PESTICIDES 0.034 0.202 4,4-DDD 0.005 0.051 4,4-DDT 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.051 BHC-Beta 0.005 0.051 Chlordane 0.202 0.051 Endosulfan I		20	20			
2,4,5-TP 0.1 0.5 2,4-D 0.2 0.5 Dinoseb 0.1 0.5 Pentachlorophenol 0.2 0.5 Pentachlorophenol 0.2 0.5 POLYCHLORINATED BIPHENYLS Aroclor 1016 0.026 0.202 Aroclor 1221 0.202 0.202 Aroclor 1221 0.202 0.202 Aroclor 1242 0.041 0.202 Aroclor 1248 0.048 0.202 Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PSSTICIDES 0.05 0.051 4,4-DDD 0.005 0.051 4,4-DDT 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.005 0.051 BHC-Beta 0.02 0.051 Chloradne 0.202 0.202 delta-BHC 0.005 0.051 Endosulfan I						
2.4-D	2,4,5-T	0.1	0.5			
Dinoseb Dino	2,4,5-TP	0.1	0.5			
Pentachlorophenol 6.06 20.2 PotyCHIORINATED BIPHENYLS Aroclor 1016 0.026 0.202 Aroclor 1221 0.202 0.202 Aroclor 1232 0.015 0.202 Aroclor 1242 0.041 0.202 Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PESTICIDES 4,4-DDD 0.005 0.051 4,4-DDF 0.005 0.051 4,4-DDT 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin aldehyde 0.005 <t< td=""><td>2,4-D</td><td>0.2</td><td>0.5</td></t<>	2,4-D	0.2	0.5			
Pentachlorophenol 0.2 0.5 POLYCHLORINATED BIPHENYLS Aroclor 1016 0.026 0.202 Aroclor 1221 0.202 0.202 Aroclor 1232 0.015 0.202 Aroclor 1242 0.041 0.202 Aroclor 1248 0.048 0.202 Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PESTICIDES 4,4-DDD 0.005 0.051 4,4-DDF 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.005 0.051 BHC-Beta 0.002 0.051 Chlordane 0.202 0.051 BHC-Beta 0.005 0.051 Chlordane 0.202 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 <	Dinoseb	0.1	0.5			
POLYCHLORINATED BIPHENYLS Aroclor 1016 0.026 0.202 Aroclor 1221 0.202 0.202 Aroclor 1232 0.015 0.202 Aroclor 1242 0.041 0.202 Aroclor 1248 0.048 0.202 Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PESTICIDES ** ** 4,4-DDD 0.005 0.051 4,4-DDT 0.005 0.051 4,4-DT 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051	Pentachlorophenol	6.06	20.2			
Aroclor 1016	Pentachlorophenol	0.2	0.5			
Aroclor 1221 0.202 0.202 Aroclor 1232 0.015 0.202 Aroclor 1242 0.041 0.202 Aroclor 1248 0.048 0.202 Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PESTICIDES 4.4-DDD 0.005 0.051 4.4-DDT 0.005 0.051 Aldrin 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan II 0.005 0.051 Endrin 1 0.005 0.051 Endrin 0.005 0.051 Endrin 1 0.005 0.051	POLYCHLORINATED BIPHENYLS					
Aroclor 1232	Aroclor 1016	0.026	0.202			
Aroclor 1242 0.041 0.202 Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PESTICIDES 0.005 0.051 4,4-DDD 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.00 0.051 Chlordane 0.202 0.051 BHC-Beta 0.005 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Parameter Current LOD (μg/L) Current LOQ (μg/L) PSTICIDES 0.051 0.051 Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 </td <td>Aroclor 1221</td> <td>0.202</td> <td>0.202</td>	Aroclor 1221	0.202	0.202			
Aroclor 1248 0.048 0.202 Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PESTICIDES 4,4-DDD 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.02 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051	Aroclor 1232	0.015	0.202			
Aroclor 1254 0.035 0.202 Aroclor 1260 0.034 0.202 PESTICIDES 4,4-DDD 0.005 0.051 4,4-DDT 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin 0.005 0.051 Endrin 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 1 0.005 0.051	Aroclor 1242	0.041	0.202			
Aroclor 1260 0.034 0.202 PESTICIDES 4,4-DDD 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endorin 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor 0.005 0.051 Heptachlor 0.005 0.051 Heptachlor 0.005 0.051 Methoxychlor 0.005 0.051	Aroclor 1248	0.048	0.202			
Aroclor 1260 0.034 0.202 PESTICIDES 4,4-DDD 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 Aldrin 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endorin 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor 0.005 0.051 Heptachlor 0.005 0.051 Heptachlor 0.005 0.051 Methoxychlor 0.005 0.051	Aroclor 1254	0.035	0.202			
4,4-DDD 0.005 0.051 4,4-DDE 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 alpha-BHC 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PSSTICIDES 0.051 0.051 Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	Aroclor 1260	0.034	0.202			
4,4-DDE 0.005 0.051 4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 alpha-BHC 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	PESTICIDES					
4,4-DDT 0.005 0.051 Aldrin 0.005 0.051 alpha-BHC 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES 0.051 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	4.4-DDD	0.005	0.051			
Aldrin 0.005 0.051 alpha-BHC 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endrin aldehyde 0.005 0.051	4.4-DDE	0.005	0.051			
Aldrin 0.005 0.051 alpha-BHC 0.005 0.051 BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endrin aldehyde 0.005 0.051	4.4-DDT	0.005	0.051			
BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan III 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051		0.005	0.051			
BHC-Beta 0.02 0.051 Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan III 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	alpha-BHC	0.005	0.051			
Chlordane 0.202 0.202 delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	BHC-Beta	0.02	0.051			
delta-BHC 0.005 0.051 Dieldrin 0.005 0.051 Endosulfan 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Endrin aldehyde 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	Chlordane	0.202				
Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (μg/L) Current LOQ (μg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	delta-BHC	0.005	0.051			
Endosulfan I 0.005 0.051 Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (μg/L) Current LOQ (μg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	Dieldrin	0.005	0.051			
Endosulfan II 0.005 0.051 Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	Endosulfan I					
Endosulfan Sulfate 0.005 0.051 Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (μg/L) Current LOQ (μg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051						
Endrin 0.005 0.051 Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051						
Endrin aldehyde 0.005 0.051 gamma-BHC 0.005 0.051 Parameter Current LOD (µg/L) Current LOQ (µg/L) PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051						
gamma-BHC 0.005 0.051 Parameter Current LOD (μg/L) Current LOQ (μg/L) PESTICIDES *** Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051						
Parameter Current LOD (μg/L) Current LOQ (μg/L) PESTICIDES						
PESTICIDES Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051	0					
Heptachlor 0.005 0.051 Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051						
Heptachlor epoxide 0.005 0.051 Methoxychlor 0.005 0.051		0.005	0.051			
Methoxychlor 0.005 0.051						
10vannene 0.202 1.01	Toxaphene	0.202	1.01			

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

APPENDIX II-H GROUNDWATER QUALITY PARAMETERS

JOB NO. ____02201056.30_ SHEET NO. _4_ OF __6__ COMPILED BY: __GRI_ CHECKED BY: __BSP_ DATE __05/17/2021_

APPENDIX II PARAMETERS (NOT LISTED ON TABLES I AND II)

Parameter	Current LOD (µg/L)	Current LOQ (µg/L)				
SEMI-VOLATILE ORGANIC COMPOUNDS						
1,2,4,5-Tetrachlorobenzene	2.02	10.1				
1,4-Naphthoquinone	2.02	10.1				
1-Naphthylamine	1.01	10.1				
2,3,4,6-Tetrachlorophenol	1.01	10.1				
2,4,5-Trichlorophenol	1.01	10.1				
2,4,6-Trichlorophenol	3.03	10.1				
2,4-Dichlorophenol	3.03	10.1				
2,4-Dimethylphenol	0.51	0.51				
2,4-Dinitrophenol	8.08	50.5				
2,4-Dinitrotoluene	2.53	10.1				
2,6-Dichlorophenol	1.01	10.1				
2.6-Dinitrotoluene	4.04	10.1				
2-Acetylaminofluorene	2.53	2.53				
2-Chloronaphthalene	4.55	10.1				
2-Chlorophenol	3.54	10.1				
2-Methylnaphthalene	2.02	10.1				
2-Methylphenol	8.08	10.1				
2-Naphthylamine	2.02	10.1				
2-Nitrogniline	2.02	20.2				
2-Nitrophenol	3.03	10.1				
3,3-Dichlorobenzidine	4.04	10.1				
3,3-Dimethylbenzidine	2.53	2.53				
3-Methylcholanthrene	1.01	10.1				
3-Nitrogniline	2.02	20.2				
4,6-Dinitro-2-methylphenol	8.08	50.5				
4-Aminobiphenyl	2.02	10.1				
4-Bromophenyl phenyl ether	3.54	10.1				
4-Chloro-3-methylphenol	3.03	10.1				
4-Chloroaniline	2.02	10.1				
4-Chlorophenyl phenyl ether	3.54	10.1				
4-Nitrogniline	2.02	20.2				
4-Nitrophenol	2.02	50.5				
5-Nitro-o-toluidine	2.02	10.1				
7,12-Dimethylbenz(a)anthracene	2.02	10.1				
Acenaphthene	4.04	10.1				
Acenaphthylene	4.04	10.1				
Acetophenone	2.02	20.2				
Anthracene	5.05	10.1				
Benzo(a)anthracene	0.05	0.05				
Benzo(a)pyrene	0.03	0.03				
Benzo(b)fluoranthene	4.04	10.1				
Benzo(ghi)perylene	2.02	10.1				
Benzo(k)fluoranthene	6.06	10.1				
Benzyl alcohol	1.01	20.2				
penzyi alconoi	1.01	ZU.Z				

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

APPENDIX II-H GROUNDWATER QUALITY PARAMETERS

JOB NO. ____02201056.30_ SHEET NO. _5_ OF __6__ COMPILED BY: __GRI_ CHECKED BY: __BSP_ DATE __05/17/2021_

APPENDIX II PARAMETERS (NOT LISTED ON TABLES I AND II)

Parameter		Current LOQ (µg/L)
SEMI-VOLATILE ORGANIC COMPOU		
bis(2-chloroethoxy) methane	3.54	10.1
bis(2-Chloroethyl) ether	3.54	10.1
bis(2-Chloroisopropyl) ether	3.03	10.1
bis(2-Ethylhexyl) phthalate	2.53	2.53
Butyl benzyl phthalate	7.07	10.1
Chlorobenzilate	2.53	2.53
Chlorpyrifos	2.02	10.1
Chrysene	4.04	10.1
Cresol	3.03	10.1
Diallate	2.53	2.53
Dibenz(a,h)anthracene	2.02	10.1
Dibenzofuran	2.02	5.05
Diethyl phthalate	3.03	10.1
Dimethoate	2.53	2.53
Dimethyl phthalate	3.54	10.1
Di-n-butyl phthalate	4.04	10.1
Dinitrobenzene	2.53	2.53
Di-n-octyl phthalate	8.08	10.1
Diphenylamine	2.02	10.1
Disulfoton	2.53	2.53
Ethyl methanesulfonate	1.01	20.2
Famphur	2.53	2.53
Fluoranthene	5.05	10.1
Fluorene	4.04	10.1
Hexachlorobenzene	0.05	1
Hexachlorobutadiene	4.55	10.1
Hexachlorocyclopentadiene	1.01	10.1
Hexachloroethane	3.54	10.1
Hexachloropropene	2.02	2.53
Indeno(1,2,3-cd)pyrene	3.03	10.1
Isodrin	1.01	10.1
Isophorone	2.53	10.1
Isosafrole	2.02	10.1
Kepone	2.02	2.53
m,p-Cresols	1.01	10.1
Methapyrilene	1.01	10.1
Methyl methanesulfonate	1.01	10.1
Nitrobenzene	3.03	10.1
N-Nitrosodiethylamine	2.53	2.53
N-Nitrosodimethylamine	3.03	10.1
N-Nitrosodi-n-butylamine	2.02	10.1
N-Nitroso-Di-n-propylamine	3.54	10.1
N-Nitrosodiphenylamine	3.03	10.1
N-Nitrosomethyl-ethylamine	2.02	2.53
N-Nitrosopiperidine	2.02	10.1
N-Nitrosopyrrolidine	2.02	2.53
o,o,o-Triethylphosphorothioate	2.02	10.1
o-Toluidine	2.02	2.53
Parathion ethyl	2.53	2.53
Parameter	Current LOD (µg/L)	Current LOQ (µg/L)
SEMI-VOLATILE ORGANIC COMPOU		Contain LOG (µg/L)
Parathion methyl	2.02	2.53
P-Dimethylaminoazobenzene	1.01	2.53
Pentachlorobenzene	2.02	10.1
Pentachloronitrobenzene	1.01	10.1
Phenacetin	1.01	10.1
Phenanthrene	5.05	10.1
Phenol	2.53	10.1
Phorate		
p-Phenylenediamine	2.02	2.53
p-Pnenylenealamine Pronamide	2.02	10.1
	2.02	10.1
Pyrene	7.07	10.1
Safrole	2.02	2.53
sym-Trinitrobenzene	1.01	5.05

11260 Roger Bacon Drive Reston, VA 20190 703 471-6150 FAX 703 471-6676

APPENDIX II-H GROUNDWATER QUALITY PARAMETERS

JOB NO. ____02201056.30_ SHEET NO. _6_ OF __6__ COMPILED BY: __GRI_ CHECKED BY: __BSP_ DATE __05/17/2021_

APPENDIX II PARAMETERS (NOT LISTED ON TABLES I AND II)

VOLATILE ORGANIC COMPOUNDS					
1,1-Dichloropropene	0.6	1			
1,2,4-Trichlorobenzene	0.5	1			
1,3-Dichlorobenzene	0.3	1			
1,3-Dichloropropane	0.4	1			
2,2-Dichloropropane	0.6	2			
Acetonitrile	8	40			
Acrolein	6	10			
Allyl Chloride	0.6	1			
Chloroprene	0.5	5			
Dichlorodifluoromethane	0.95	1			
Ethyl methacrylate	0.7	5			
Isobutyl alcohol	25	40			
Methacrylonitrile	1	1.5			
Methyl methacrylate	0.7	2			
Naphthalene	0.8	1			
Propionitrile	7.5	40			

°C = degrees Celsius

HCl = Hydrochloric Acid

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mL = milliliter

ATTACHMENTS

(Electronic Copy)